In this paper, we studied the effect of magnetic hydrodynamic (MHD) on accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. The velocity field of the flow is described by a fractional partial differential equation of fractional order by using Fourier sine transform and Laplace transform, an exact solutions for the velocity distribution are obtained for the following two problems: flow induced by constantly accelerating plate, and flow induced by variable accelerated plate. These solutions, presented under integral and series forms in terms of the generalized Mittag-Leffler function, are presented as the sum of two terms. The first term, represent the velocity field corresponding to a Newtonian fluid, and the second term gives the non-Newtonian contributions to the general solutions. The similar solutions for second grad, Maxwell and Oldroyd-B fluids with fractional derivatives, as well as, those for the ordinary models are obtained as the limiting cases of our solutions. Moreover, in the special cases when 1==βα . While the
MATHEMATICA package is used to draw the figures velocity components in the
plane.
The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
The dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
HIV is a leading cause of death, in particular, in Sub-Saharan Africa. In this paper, a fractional differential system in vivo deterministic models for HIV dynamics is presented and analyzed. The main roles played by different HIV treatment methods are investigated using fractional optimal control theory. We use three treatment regimens as system control variables to determine the best strategies for controlling the infection. The optimality system is numerically solved using the fractional Adams-Bashforth technique.
In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami
... Show MoreThe aim of this paper is the study of the influence magnetic field on steady state
flows and heat transfer in microchannels between two parallel plates.
It is found that the motion equations are controlled by many dimensionless
parameter, namely magnetic field parameter M Reynolds number Re, physical
quantity at wall W and Knudsen number Kn also found that the energy equations
are controlled by many dimensionless parameter, namely magnetic field parameter
M Reynolds number Re, physical quantity at wall W and Knudsen number Kn ,
Prinkman number Br and Peclet number Pe.
The equations which controlled this type of fluid flow are complicated, so finding
an analytical solution is not easy.
We obtained the velocit
In this paper, a theoretical study to the effect of journal misalignment on the static characteristics of oil filled porous journal bearing when lubricated with couple stress fluid has been carried out.
The analytical model used through this work is for a bearing with isotropic permeability. Considering isotropic permeability the Reynolds' equation for the oil film is modified to include a so – called filter term and the effect of fluid coupled stress. The pressure equation for the porous medium is obtained from Darcy's law and continuity equation. The equation which was used to evaluate the oil film thickness was modified to include the effect of possible misalignment in longitudinal and transverse directions. The governing eq
... Show MoreIn this article, we investigate a mathematical fractional model of tuberculosis that takes into account vaccination as a possible way to treat the disease. We use an in-host tuberculosis fractional model that shows how Macrophages and Mycobacterium tuberculosis interact to knowledge of how vaccination treatments affect macrophages that have not been infected. The existence of optimal control is proven. The Hamiltonian function and the maximum principle of the Pontryagin are used to describe the optimal control. In addition, we use the theory of optimal control to develop an algorithm that leads to choosing the best vaccination plan. The best numerical solutions have been discovered using the forward and backward fractional Euler
... Show Moregenerator the metal conductor is replaced by conducting gas plasma.