In this paper, we studied the effect of magnetic hydrodynamic (MHD) on accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. The velocity field of the flow is described by a fractional partial differential equation of fractional order by using Fourier sine transform and Laplace transform, an exact solutions for the velocity distribution are obtained for the following two problems: flow induced by constantly accelerating plate, and flow induced by variable accelerated plate. These solutions, presented under integral and series forms in terms of the generalized Mittag-Leffler function, are presented as the sum of two terms. The first term, represent the velocity field corresponding to a Newtonian fluid, and the second term gives the non-Newtonian contributions to the general solutions. The similar solutions for second grad, Maxwell and Oldroyd-B fluids with fractional derivatives, as well as, those for the ordinary models are obtained as the limiting cases of our solutions. Moreover, in the special cases when 1==βα . While the
MATHEMATICA package is used to draw the figures velocity components in the
plane.
Waveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis a
ABSTRACT Background: Color changes that are detectable to human eye can affect the esthetic appearance of ceramic veneers. The purpose of this study was to evaluate and compare the effect of artificial accelerated aging on the color of ceramic veneers cemented with different resin cements. Materials and Methods: Sixty discs were prepared with 0.5 mm thickness, 30 discs made from IPS e.max press (Ivoclar Vivadent) and 30 discs were made from VITA Enamic (VITA Zahnfabrik). The discs were cemented with three resin cements: Variolink Veneer MV 0 shade (Ivoclar Vivadent), Rely X veneer Translucent shade (3M ESPE) and NX3 Nexus Clear shade (Kerr Corporation) with 0.1 mm thickness. The spectrophotometer Easyshade Advance was used to measure the co
... Show MoreThe aim of this paper is to study the effects of magnetohydrodynamic (MHD) on
flow of field of Oldroyd-B fluid between two side walls parallel to the plate .
The continuity and motion equations, for the problem under consideration are
obtained. It is found that the motion equation contains fraction derivative of
different order and the magnetohydrodynamic (MHD) parameter M .The effect of M
upon the velocity field is analyzed ,many types of fractional models are also
considered through taken different values of the fraction derivative order . This has
been done through plotting the velocity field by using Mathemitca package .
Close form for the stress tensor was obtained in many cases, which have been
studied be
In this paper, the time-fractional Fisher’s equation (TFFE) is considered to exam the analytical solution using the Laplace q-Homotopy analysis method (Lq-HAM)â€. The Lq-HAM is a combined form of q-homotopy analysis method (q-HAM) and Laplace transform. The aim of utilizing the Laplace transform is to outdo the shortage that is mainly caused by unfulfilled conditions in the other analytical methods. The results show that the analytical solution converges very rapidly to the exact solution.
A Genetic Algorithm optimization model is used in this study to find the optimum flow values of the Tigris river branches near Ammara city, which their water is to be used for central marshes restoration after mixing in Maissan River. These tributaries are Al-Areed, AlBittera and Al-Majar Al-Kabeer Rivers. The aim of this model is to enhance the water quality in Maissan River, hence provide acceptable water quality for marsh restoration. The model is applied for different water quality change scenarios ,i.e. , 10%,20% increase in EC,TDS and BOD. The model output are the optimum flow values for the three rivers while, the input data are monthly flows(1994-2011),monthly water requirements and water quality parameters (EC, TDS, BOD, DO and
... Show MoreOptimal control methods are used to get an optimal policy for harvesting renewable resources. In particular, we investigate a discretization fractional-order biological model, as well as its behavior through its fixed points, is analyzed. We also employ the maximal Pontryagin principle to obtain the optimal solutions. Finally, numerical results confirm our theoretical outcomes.
In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
Long memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show MoreIn this paper, we discuss a fluid problem that has wide applications in biomechanics, polymer industries, and biofluids. We are concerned here with studying the combined effects of porous medium and heat transfer on MHD non-Newtonian Jeffery fluid which flows through a two dimensional asymmetric, inclined tapered channel. Base equations, represented by mass conservation, motion, energy and concentration conservation, were formulated first in a fixed frame and then transformed into a moving frame. By holding the assumptions of “long wavelength and low Reynolds number†these physical equations were simplified into differential equations. Approximate solutions for the velocity profile, stream function, and temperature profile we
... Show MoreThis paper aims to study a mathematical model showing the effects of mass transfer on MHD oscillatory flow for Carreau fluid through an inclined porous channel under the influence of temperature and concentration at a slant angle on the centre of the flow with the effect of gravity. We discussed the effects of several parameters that are effective on fluid movement by analyzing the graphs obtained after we reached the momentum equation solution using the perturbation series method and the MATHEMATICA program to find the numerical results and illustrations. We observed an increased fluid movement by increasing radiation and heat generation while fluid movement decreased by increasing the chemical reaction parameter and Froude number. 
... Show More