Preferred Language
Articles
/
ijs-12310
Stability Analysis with Bifurcation of an SVIR Epidemic Model Involving Immigrants

There are many factors effect on the spread of infectious disease or control it,
some of these factors are (immigration and vaccination). The main objective of this
paper is to study the effect of those factors on the dynamical behavior of an SVIR
model. It is assumed that the disease is spread by contact between members of
populations individuals. While the recovered individuals gain permanent immunity
against the disease. The existence, uniqueness and boundedness of the solution of
this model are investigated. The local and global dynamical behaviors of the model
are studied. The local bifurcations and Hopf bifurcation of the model are
investigated. Finally, in order to confirm our obtained results and specify the effects
of model’s parameters on the dynamical behavior, numerical simulation of the SVIR
model is performed.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Bifurcation Analysis of Food Web Prey- Predator Model with Toxin
Abstract<p>Local and global bifurcations of food web model consists of immature and mature preys, first predator, and second predator with the current of toxicity and harvesting was studied. It is shown that a trans-critical bifurcation occurs at the equilibrium point <italic>E</italic> <sub>0</sub>, and it revealed the existence of saddle-node bifurcation occurred at equilibrium points <italic>E</italic> <sub>1</sub>, <italic>E</italic> <sub>2</sub> and <italic>E</italic> <sub>3</sub>. At any point, the occurrence of bifurcation of the pitch for</p> ... Show More
Scopus Crossref
View Publication
Publication Date
Thu Apr 01 2021
Journal Name
Chaos, Solitons &amp; Fractals
Modeling and analysis of an SI1I2R epidemic model with nonlinear incidence and general recovery functions of I1

In this paper, we established a mathematical model of an SI1I2R epidemic disease with saturated incidence and general recovery functions of the first disease I1. Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stability is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we carried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct numerical simulations that suppo

... Show More
View Publication
Publication Date
Thu Oct 06 2022
Journal Name
Advances In Systems Science And Applications
Stability and Bifurcation of a Delay Cancer Model in the Polluted Environment

It is well known that the spread of cancer or tumor growth increases in polluted environments. In this paper, the dynamic behavior of the cancer model in the polluted environment is studied taking into consideration the delay in clearance of the environment from their contamination. The set of differential equations that simulates this epidemic model is formulated. The existence, uniqueness, and the bound of the solution are discussed. The local and global stability conditions of disease-free and endemic equilibrium points are investigated. The occurrence of the Hopf bifurcation around the endemic equilibrium point is proved. The stability and direction of the periodic dynamics are studied. Finally, the paper is ended with a numerical simul

... Show More
Scopus (2)
Scopus
View Publication
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
The Bifurcation Analysis and Persistence of the Food Chain Ecological Model with Toxicant
Abstract<p>In this work, the occurrence conditions of both local Bifurcation and persistence were studied, Saddle-node bifurcation appears near fourth point, near the first point, the second point and the third point a transcritical bifurcation occurred but no pitchfork bifurcation happened near any of the four equilibrium points. In addition to study conditions for Hopf-bifurcation near positive stable point that is the fourth point. Besides discuss persistence occurrence as globally property of the food chain of three species include prey, first predator and top predator with impact of toxin in all species and harvesting effect on the predator’s only. Numerical results for the set of hypothe</p> ... Show More
Crossref
View Publication
Publication Date
Thu Jun 29 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications (ijnaa)
Applying a suitable approximate-simulation technique of an epidemic model with random parameters

Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat

... Show More
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
The Local Bifurcation of an Eco-Epidemiological Model in the Presence of Stage- Structured with Refuge

In this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point are

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed May 26 2021
Journal Name
Communications In Mathematical Biology And Neuroscience
Modelling and stability analysis of the competitional ecological model with harvesting

The interplay of predation, competition between species and harvesting is one of the most critical aspects of the environment. This paper involves exploring the dynamics of four species' interactions. The system includes two competitive prey and two predators; the first prey is preyed on by the first predator, with the former representing an additional food source for the latter. While the second prey is not exposed to predation but rather is exposed to the harvest. The existence of possible equilibria is found. Conditions of local and global stability for the equilibria are derived. To corroborate our findings, we constructed time series to illustrate the existence and the stability of equilibria numerically by varying the different values

... Show More
Scopus (8)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Dynamical Study of An SIR Epidemic Model With Nonlinear Incidence Rate and Regress of Treatment

   In this research, dynamical study of an SIR epidemical model with nonlinear direct incidence rate (Beddington-De Angelis ) type, and regress of treatment investigated .An  analytical study  to the model shows that there are two equilibrium points appear, the discussed successfully with sufficient condition, the existence of local bifurcation and Hopf bifurcation was analyzed, finally numerical simulations are done to explain the analytic studies.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
Stability Analysis of A stage Structure Prey-Predator Model with Hollimg Type IV Functional Response

In this paper a stage structure prey-predator model with Hollimg type IV functional response is proposed and analyzed. The local stability analysis of the system is carried out. The occurrence of a simple Hopf bifurcation and local bifurcation are investigated. The global dynamics of the system is investigated with the help of the Lyapunov function. Finally, the analytical obtained results are supported with numerical simulation and the effects of parameters system are discussed. It is observed that, the system has either stable point or periodic dynamics.

View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
A Reliable Iterative Transform Method for Solving an Epidemic Model

    The main purpose of the work is to apply a new method, so-called LTAM, which couples the Tamimi and Ansari iterative method (TAM) with the Laplace transform (LT). This method involves solving a problem of non-fatal disease spread in a society that is assumed to have a fixed size during the epidemic period. We apply the method to give an approximate analytic solution to the nonlinear system of the intended model. Moreover, the absolute error resulting from the numerical solutions and the ten iterations of LTAM approximations of the epidemic model, along with the maximum error remainder, were calculated by using MATHEMATICA® 11.3 program to illustrate the effectiveness of the method.

Scopus (7)
Crossref (1)
Scopus Crossref
View Publication Preview PDF