Preferred Language
Articles
/
ijs-12310
Stability Analysis with Bifurcation of an SVIR Epidemic Model Involving Immigrants

There are many factors effect on the spread of infectious disease or control it,
some of these factors are (immigration and vaccination). The main objective of this
paper is to study the effect of those factors on the dynamical behavior of an SVIR
model. It is assumed that the disease is spread by contact between members of
populations individuals. While the recovered individuals gain permanent immunity
against the disease. The existence, uniqueness and boundedness of the solution of
this model are investigated. The local and global dynamical behaviors of the model
are studied. The local bifurcations and Hopf bifurcation of the model are
investigated. Finally, in order to confirm our obtained results and specify the effects
of model’s parameters on the dynamical behavior, numerical simulation of the SVIR
model is performed.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Journal Of Physics: Conference Series
The local bifurcation analysis of two preys stage-structured predator model with anti-predator behavior
Abstract<p>This paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.</p>
Crossref
View Publication
Publication Date
Tue Sep 26 2023
Journal Name
Brazilian Journal Of Biometrics
Bifurcation analysis of commensalism intraction and harvisting on food chain model

In this paper, we study the incorporation of the commensalism interaction and harvesting on the Lotka–Volterra food chain model. The system provides one commensal prey, one harvested prey, and two predators. A set of preliminary results in local bifurcation analysis around each equilibrium point for the proposed model is discussed, such as saddle-node, transcritical and pitchfork. Some numerical analysis to confirm the accruing of local bifurcation is illustrated. To back up the conclusions of the mathematical study, a numerical simulation of the model is carried out with the help of the MATLAB program. It can be concluded that the system's coexistence can be achieved as long as the harvesting rate on the second prey population is

... Show More
Scopus (5)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Fri Jun 23 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
The dynamic of an eco-epidemiological model involving fear and hunting cooperation

In the present paper, an eco-epidemiological model consisting of diseased prey consumed by a predator with fear cost, and hunting cooperation property is formulated and studied. It is assumed that the predator doesn’t distinguish between the healthy prey and sick prey and hence it consumed both. The solution’s properties such as existence, uniqueness, positivity, and bounded are discussed. The existence and stability conditions of all possible equilibrium points are studied. The persistence requirements of the proposed system are established. The bifurcation analysis near the non-hyperbolic equilibrium points is investigated. Numerically, some simulations are carried out to validate the main findings and obtain the critical values of th

... Show More
Scopus (5)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
The Local Bifurcation of an Eco-Epidemiological Model in the Presence of Stage- Structured with Refuge

In this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point

... Show More
Crossref (1)
Crossref
Publication Date
Tue Mar 26 2019
Journal Name
International Journal Of Mathematics And Mathematical Sciences
Stability and Bifurcation of a Prey-Predator-Scavenger Model in the Existence of Toxicant and Harvesting

In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.

Scopus (24)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Journal Of Physics: Conference Series
The Bifurcation analysis of Prey-Predator Model in The Presence of Stage Structured with Harvesting and Toxicity
Abstract<p>For a mathematical model the local bifurcation like pitchfork, transcritical and saddle node occurrence condition is defined in this paper. With the existing of toxicity and harvesting in predator and prey it consist of stage-structured. Near the positive equilibrium point of mathematical model on the Hopf bifurcation with particular emphasis it established. Near the equilibrium point E<sub>0</sub> the transcritical bifurcation occurs it is described with analysis. And it shown that at equilibrium points E<sub>1</sub> and E<sub>2</sub> happened the occurrence of saddle-node bifurcation. At each point the pitch fork bifurcation occurrence is not happened. </p> ... Show More
Crossref (1)
Crossref
View Publication
Publication Date
Wed Nov 24 2021
Journal Name
International Journal Of Differential Equations
The Impact of Media Coverage and Curfew on the Outbreak of Coronavirus Disease 2019 Model: Stability and Bifurcation

In this study, the spreading of the pandemic coronavirus disease (COVID-19) is formulated mathematically. The objective of this study is to stop or slow the spread of COVID-19. In fact, to stop the spread of COVID-19, the vaccine of the disease is needed. However, in the absence of the vaccine, people must have to obey curfew and social distancing and follow the media alert coverage rule. In order to maintain these alternative factors, we must obey the modeling rule. Therefore, the impact of curfew, media alert coverage, and social distance between the individuals on the outbreak of disease is considered. Five ordinary differential equations of the first-order are used to represent the model. The solution properties of the system ar

... Show More
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Stability Analysis of a Prey-Predator Model with Prey Refuge and Fear of Adult Predator

     This paper is concerned with a Holling-II stage-structured predator-prey system in which predators are divided into an immature and mature predators. The aim is to explore the impact of the prey's fear caused by the dread of mature predators in a prey-predator model including intraspecific competitions and prey shelters. The theoretical study includes the local and global stability analysis for the three equilibrium points of the system and shows the prey's fear may lead to improving the stability at the positive equilibrium point. A numerical analysis is given to ensure the accuracy of the theoretical outcomes and to testify the conditions of stability of the system near the non-trivial equilibrium points.

Scopus (6)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Local Bifurcation of Four Species Syn–Ecosymbiosis model

In this paper, the conditions of occurrence of the local bifurcation (such as saddle-node, transcritical and pitchfork) near each of the equilibrium points of a mathematical model consists from four-species Syn- Ecosymbiosis are established.

View Publication Preview PDF
Publication Date
Wed Jan 02 2019
Journal Name
Differential Equations And Dynamical Systems
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref
View Publication