Preferred Language
Articles
/
ijs-12176
Automatic Segmentation and Identification of Abnormal Breast Region in Mammogram Images Based on Statistical Features
...Show More Authors

Breast cancer is one of the most common malignant diseases among women;
Mammography is at present one of the available method for early detection of
abnormalities which is related to breast cancer. There are different lesions that are
breast cancer characteristic such as masses and calcifications which can be detected
trough this technique. This paper proposes a computer aided diagnostic system for
the extraction of features like masses and calcifications lesions in mammograms for
early detection of breast cancer. The proposed technique is based on a two-step
procedure: (a) unsupervised segmentation method includes two stages performed
using the minimum distance (MD) criterion, (b) feature extraction based on Gray
level Co-occurrence matrices GLCM for the identification of masses and
calcifications lesions. The method suggested for the detection of abnormal lesions
from mammogram image segmentation and analysis was tested over several images
taken from National Center for Early Detection of cancer in Baghdad.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
STATISTICAL COMPUTATION AND APPLICATION WITH GENERALIZED POISSON DISTRIBUTION
...Show More Authors

Scopus (1)
Scopus
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
An Improved Segmentation Technique for Early Detection of Exudates of Diabetic Retinopathy Disease
...Show More Authors

Diabetic retinopathy (DR) is a diabetes- caused disease that is associated with  leakage of fluid from the blood vessels into the retina, leading to its damage. It is one of the most common diseases that can lead to weak vision and even blindness. Exudates is a clear indication of diabetic retinopathy, which is the main cause of blindness in people with diabetes. Therefore, early detection of exudates is a crucial and essential step to prevent blindness and vision loss is in the analysis of digital diabetic retinopathy systems. This paper presents an improved approach for detection of exudates in retina image using supervised-unsupervised Minimum Distance (MD) segmentation method. The suggested system includes three stages; First, a

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
New algorithms to Enhanced Fused Images from Auto-Focus Images
...Show More Authors

Enhancing quality image fusion was proposed using new algorithms in auto-focus image fusion. The first algorithm is based on determining the standard deviation to combine two images. The second algorithm concentrates on the contrast at edge points and correlation method as the criteria parameter for the resulted image quality. This algorithm considers three blocks with different sizes at the homogenous region and moves it 10 pixels within the same homogenous region. These blocks examine the statistical properties of the block and decide automatically the next step. The resulted combined image is better in the contras

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Oct 02 2016
Journal Name
Journal Of The Faculty Of Medicine Baghdad
The significance of incidental breast findings on routine computed tomography of the chest
...Show More Authors

Background: with the dramatic increase in the use of chest computed tomography (CT) for diagnostic or screening purposes, incidental breast lesions faced more frequently; while most of these incidental breast findings are benign; nevertheless, breast cancer be existing.
Objectives: to determine the imaging characteristic of incidentally detected breast lesions in routine chest computed tomography and to review the outcome of further assessment of these abnormalities.
Patients and methods: a prospective study performed on (33 patients) during the period from October 2014 to November 2015 in AL Shaheed Ghazi Al Hariri hospital, Baghdad teaching hospital, and Radiology Institute at Medical city complex, Baghdad. All patients were fema

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Automatic Diagnosis of Coronavirus Using Conditional Generative Adversarial Network (CGAN)
...Show More Authors

     A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an  incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Improved Automatic Registration Adjustment of Multi-source Remote Sensing Datasets
...Show More Authors

Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration p

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Improved Automatic Registration Adjustment of Multi-source Remote Sensing Datasets
...Show More Authors

Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration process by de

... Show More
Crossref
Publication Date
Wed Jun 02 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Identification of microflora associated with dust falling on Karbala province and seasonal distribution
...Show More Authors

Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Wed Oct 07 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
Correlation of Toxoplasmosis Seroprevalence and Serum Level of Interleukin-10 in Iraqi Breast Cancer Women
...Show More Authors

Toxoplasmosis is regarded as one of the most important global life-threatening diseases in immune-compromised people. The intracellular protozoon Toxoplasma gondii is the causative pathogen of toxoplasmosis. Aim of this study is to investigate the possible association between T. gondii infection and breast cancer (BC) in Iraqi women, also to assess the effect of T. gondiion interleukin 10 (IL-10) of the immune response. By ELISA method, blood samples from 81 women with breast cancer and 60 apparently healthy women have been examined for presence of anti-toxoplasmaantibodies, also the levels of serum IL-10 were estimated in these subjects. Results showed that women with BC had the highest prevalence rate of toxoplasmosis. The anti- T.gondii

... Show More
View Publication
Scopus Crossref