Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration process by defining a set of control point pairs using manual selection, then comput the parameters of global affine transformation model to match them and resample the images. The second stage included matching process refinement by determining the shift value in control points (CPs) location depending on radiometric similarity measure. Then shift map technique was adjusted to adjust the process using 2nd order polynomial transformation function. This function has chosen after conducting statistical analyses, comparing between the common transformation functions (similarity, affine, projection and 2nd order polynomial). The results showed that the developed approach reduced the root mean square error (RMSE) of registration process and decreasing the discrepancies between registered datasets with 60%, 57% and 48% respectively for each one of the three tested datasets.
Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration p
... Show MoreDigital Elevation Model (DEM) is one of the developed techniques for relief representation. The definition of a DEM construction is the modeling technique of earth surface from existing data. DEM plays a role as one of the fundamental information requirement that has been generally utilized in GIS data structures. The main aim of this research is to present a methodology for assessing DEMs generation methods. The DEMs data will be extracted from open source data e.g. Google Earth. The tested data will be compared with data produced from formal institutions such as General Directorate of Surveying. The study area has been chosen in south of Iraq (Al-Gharraf / Dhi Qar governorate. The methods of DEMs creation are kriging, IDW (inver
... Show MoreDigital Elevation Model (DEM) is one of the developed techniques for relief representation. The definition of a DEM construction is the modeling technique of earth surface from existing data. DEM plays a role as one of the fundamental information requirement that has been generally utilized in GIS data structures. The main aim of this research is to present a methodology for assessing DEMs generation methods. The DEMs data will be extracted from open source data e.g. Google Earth. The tested data will be compared with data produced from formal institutions such as General Directorate of Surveying. The study area has been chosen in south of Iraq (Al-Gharraf / Dhi Qar governorate. The methods of DEMs creation are kri
... Show MoreIn cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Slid
... Show MoreBig data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show MoreRecently The problem of desertification and vegetation cover degradation become an environmental global challenge. This problem could be summarized as as the land cover changes. In this paper, the area of Al- Muthana in the south of Iraq will be consider as one of Semi-arid lands. For this purpose, the Ladsat-8 images can be used with 15 m in spatial resolution. In order to over Achieve the work, many important ground truth data must be collected such as, rain precipitation, temperature distribution over the seasons, the DEM of the region, and the soil texture characteristics. The extracted data from this project are tables, 2-D figures, and GIS maps represent the distributions of vegetation areas, evaporation / precipitation, river levels
... Show MoreLandforms on the earth surface are so expensive to map or monitor. Remote Sensing observations from space platforms provide a synoptic view of terrain on images. Satellite multispectral data have an advantage in that the image data in various bands can be subjected to digital enhancement techniques for highlighting contrasts in objects for improving image interpretability. Geomorphological mapping involves the partitioning of the terrain into conceptual spatial entities based upon criteria. This paper illustrates how geomorphometry and mapping approaches can be used to produce geomorphological information related to the land surface, landforms and geomorphic systems. Remote Sensing application at Razzaza–Habbaria area southwest of Razz
... Show More