Diabetic retinopathy (DR) is a diabetes- caused disease that is associated with leakage of fluid from the blood vessels into the retina, leading to its damage. It is one of the most common diseases that can lead to weak vision and even blindness. Exudates is a clear indication of diabetic retinopathy, which is the main cause of blindness in people with diabetes. Therefore, early detection of exudates is a crucial and essential step to prevent blindness and vision loss is in the analysis of digital diabetic retinopathy systems. This paper presents an improved approach for detection of exudates in retina image using supervised-unsupervised Minimum Distance (MD) segmentation method. The suggested system includes three stages; First, after image acquisition, it is pre-processed for preparing and improving its quality. Second, the simple toward interpretation and analysis of image is segmentation as another stage.
In this research, we presented a method which is used for segmentation of exudates by the adaptive (supervised-unsupervised) Minimum Distance (MD) creation segmentation algorithm with two non-overlapping clusters. The method was proposed based on its performance compared with other methods and followed by exudates extraction as a final stage. This proposed framework helps the ophthalmologists to distinguish the problem earlier, which enables them to recommend a superior medication for forestalling further retinal harm.
Diabetic retinopathy is an eye disease, because of pressure in eye nerve fiber. It is a major cause of blindness in middle as well as older age groups; therefore it is essential to diagnose it earlier. Some of the challenges are in the diagnosis of the disease is detection edges of the image, may be some important edges are missed outcome the noise around the corners.
Wherefore, in order to reduce these effects in this paper, we proposed a new technique for edge detection using traditional operators in combination with fuzzy logic based on fuzzy inference system. The results show that the proposed fuzzy edge detection technique better than of traditional techniques, where vascular are markedly detected over the original.
Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from
... Show MoreDiabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show MoreIn the task of detecting intrinsic plagiarism, the cases where reference corpus is absent are to be dealt with. This task is entirely based on inconsistencies within a given document. Detection of internal plagiarism has been considered as a classification problem. It can be estimated through taking into consideration self-based information from a given document.
The core contribution of the work proposed in this paper is associated with the document representation. Wherein, the document, also, the disjoint segments generated from it, have been represented as weight vectors demonstrating their main content. Where, for each element in these vectors, its average weight has been considered instead of its frequency.
Th
... Show MoreMammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti
Face Detection by skin color in the field of computer vision is a difficult challenge. Detection of human skin focuses on the identification of pixels and skin-colored areas of a given picture. Since skin colors are invariant in orientation and size and rapid to process, they are used in the identification of human skin. In addition features like ethnicity, sensor, optics and lighting conditions that are different are sensitive factors for the relationship between surface colors and lighting (an issue that is strongly related to color stability). This paper presents a new technique for face detection based on human skin. Three methods of Probability Density Function (PDF) were applied to detect the face by skin color; these ar
... Show MoreHuman skin detection, which usually performed before image processing, is the method of discovering skin-colored pixels and regions that may be of human faces or limbs in videos or photos. Many computer vision approaches have been developed for skin detection. A skin detector usually transforms a given pixel into a suitable color space and then uses a skin classifier to mark the pixel as a skin or a non-skin pixel. A skin classifier explains the decision boundary of the class of a skin color in the color space based on skin-colored pixels. The purpose of this research is to build a skin detection system that will distinguish between skin and non-skin pixels in colored still pictures. This performed by introducing a metric that measu
... Show MoreThe present study was conducted with a view to determine whether focal laser therapy result in visual recovery and regression of macular edema in patients with non proliferative diabetic retinopathy and maculopathy ,and whether combined focal and scatter laser therapy in patients with proliferative diabetic retinopathy and maculopathy results in visual recovery ,regression of macular edema and regression of the risk factors. In the present work, a frequency doubled Nd: YAG laser was used for the treatment of diabetic retinopathy. The study evaluates 41 eyes of 33 diabetic patients both with Insulin Dependent Diabetes Mellitus IDDM, (n=16) and Non Insulin Dependent Diabetes Mellitus NIDDM, (n=17) with diabetic retinopathy divided into two
... Show MoreThe rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which ca
... Show More