Preferred Language
Articles
/
ijs-1203
Mixed Implicit Galerkin – Frank Wolf, Gradient and Gradient Projection Methods for Solving Classical Optimal Control Problem Governed by Variable Coefficients, Linear Hyperbolic, Boundary Value Problem

This paper deals with testing a numerical solution for the discrete classical optimal control problem governed by a linear hyperbolic boundary value problem with variable coefficients. When the discrete classical control is fixed, the proof of the existence and uniqueness theorem for the discrete solution of the discrete weak form is achieved. The existence theorem for the discrete classical optimal control and the necessary conditions for optimality of the problem are proved under suitable assumptions. The discrete classical optimal control problem (DCOCP) is solved by using the mixed Galerkin finite element method to find the solution of the discrete weak form (discrete state). Also, it is used to find the solution for the discrete adjoint weak form (discrete adjoint) with the Gradient Projection method (GPM) , the Gradient method (GM), or the Frank Wolfe method (FWM) to the DCOCP. Within each of these three methods, the Armijo step option (ARSO) or the optimal step option (OPSO) is used to improve (to accelerate the step) the solution of the discrete classical control problem. Finally, some illustrative numerical examples for the considered discrete control problem are provided. The results show that the GPM with ARSO method is better than GM or FWM with ARSO methods. On the other hand, the results show that the GPM and GM with OPSO methods are better than the FWM with the OPSO method.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
A Linear Programming Method Based Optimal Power Flow Problem for Iraqi Extra High Voltage Grid (EHV)

The objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
The Classical Continuous Mixed Optimal Control of Couple Nonlinear Parabolic Partial Differential Equations with State Constraints

In this work, the classical continuous mixed optimal control vector (CCMOPCV) problem of couple nonlinear partial differential equations of parabolic (CNLPPDEs) type with state constraints (STCO) is studied. The existence and uniqueness theorem (EXUNTh) of the state vector solution (SVES) of the CNLPPDEs for a given CCMCV is demonstrated via the method of Galerkin (MGA). The EXUNTh of the CCMOPCV ruled with the CNLPPDEs is proved. The Frechet derivative (FÉDE) is obtained. Finally, both the necessary and the sufficient theorem conditions for optimality (NOPC and SOPC) of the CCMOPCV with state constraints (STCOs) are proved through using the Kuhn-Tucker-Lagrange (KUTULA) multipliers theorem (KUTULATH).

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Dec 21 2020
Journal Name
2020 Emerging Technology In Computing, Communication And Electronics (etcce)
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Applied And Computational Mathematics
Reliable computational methods for solving Jeffery-Hamel flow problem based on polynomial function spaces

In this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder

... Show More
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jul 01 2012
Journal Name
International Journal Of Computer Mathematics
Crossref (11)
Crossref
View Publication
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control Problems for Triple Elliptic Partial Differential Equations

In this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Thu Jan 05 2023
Journal Name
Mathematical Theory And Modeling
(Tc) Technique for Finding Optimal Solution To Transportation Problem

Given the importance of increasing economic openness transport companies’ face various issues arising at present time, this required importing different types of goods with different means of transport. Therefore, these companies pay great attention to reducing total costs of transporting commodities by using numbers means of transport methods from their sources to the destinations. The majority of private companies do not acquire the knowledge of using operations research methods, especially transport models, through which the total costs can be reduced, resulting in the importance and need to solve such a problem. This research presents a proposed method for the sum of Total Costs (Tc) of rows and columns, in order to arrive at the init

... Show More
Preview PDF
Publication Date
Sat Feb 26 2022
Journal Name
Iraqi Journal Of Science
New Class of Rank 1 Update for Solving Unconstrained Optimization Problem: New Class of Rank 1 Update for solving Unconstrained Optimization Problem

     The focus of this article is to add a new class of rank one of  modified Quasi-Newton techniques to solve the problem of unconstrained optimization by updating the inverse Hessian matrix with an update of rank 1, where a diagonal matrix is the first component of the next inverse Hessian approximation, The inverse Hessian matrix is  generated by the method proposed which is symmetric and it satisfies the condition of modified quasi-Newton, so the global convergence is retained. In addition, it is positive definite that  guarantees the existence of the minimizer at every iteration of the objective function. We use  the program MATLAB to solve an algorithm function to introduce the feasibility of

... Show More
Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Quadratic Assignment Problem by Using Meta-heuristic Search Method

While analytical solutions to Quadratic Assignment Problems (QAP) have indeed been since a long time, the expanding use of Evolutionary Algorithms (EAs) for similar issues gives a framework for dealing with QAP with an extraordinarily broad scope. The study's key contribution is that it normalizes all of the criteria into a single scale, regardless of their measurement systems or the requirements of minimum or maximum, relieving the researchers of the exhaustively quantifying the quality criteria. A tabu search algorithm for quadratic assignment problems (TSQAP) is proposed, which combines the limitations of tabu search with a discrete assignment problem. The effectiveness of the proposed technique has been compared to well-established a

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Derivation of Embedded Diagonally Implicit Methods for Directly Solving Fourth-order ODEs

EDIRKTO, an Implicit Type Runge-Kutta  Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.

Crossref
View Publication Preview PDF