Preferred Language
Articles
/
ijs-1203
Mixed Implicit Galerkin – Frank Wolf, Gradient and Gradient Projection Methods for Solving Classical Optimal Control Problem Governed by Variable Coefficients, Linear Hyperbolic, Boundary Value Problem

This paper deals with testing a numerical solution for the discrete classical optimal control problem governed by a linear hyperbolic boundary value problem with variable coefficients. When the discrete classical control is fixed, the proof of the existence and uniqueness theorem for the discrete solution of the discrete weak form is achieved. The existence theorem for the discrete classical optimal control and the necessary conditions for optimality of the problem are proved under suitable assumptions. The discrete classical optimal control problem (DCOCP) is solved by using the mixed Galerkin finite element method to find the solution of the discrete weak form (discrete state). Also, it is used to find the solution for the discrete adjoint weak form (discrete adjoint) with the Gradient Projection method (GPM) , the Gradient method (GM), or the Frank Wolfe method (FWM) to the DCOCP. Within each of these three methods, the Armijo step option (ARSO) or the optimal step option (OPSO) is used to improve (to accelerate the step) the solution of the discrete classical control problem. Finally, some illustrative numerical examples for the considered discrete control problem are provided. The results show that the GPM with ARSO method is better than GM or FWM with ARSO methods. On the other hand, the results show that the GPM and GM with OPSO methods are better than the FWM with the OPSO method.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 15 2021
Journal Name
Al-academy
Applying the substance-field model mechanism to problem solving in industrial product design: محمد علي حسين القيسي

  Problem solving methods and mechanisms contribute to facilitating human life by providing tools to solve simple and complex daily problems. These mechanisms have been essential tools for professional designers and design students in solving design problems.
This research dealt with one of those mechanisms, which is the (the substance-field model model), as it has been mentioning that this mechanism is characterized by the difficulty of its application, which formed the main research problem. In home gardens (the sub-problem of research), an analysis of this problem was applied and then a solution was found to address it. The researcher used the 3dsmax program to implement the proposed design.
The most important research res

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Science
Homotopy Perturbation Method and Convergence Analysis for the Linear Mixed Volterra-Fredholm Integral Equations

In this paper, the homotopy perturbation method is presented for solving the second kind linear mixed Volterra-Fredholm integral equations. Then, Aitken method is used to accelerate the convergence. In this method, a series will be constructed whose sum is the solution of the considered integral equation. Convergence of the constructed series is discussed, and its proof is given; the error estimation is also obtained. For more illustration, the method is applied on several examples and programs, which are written in MATLAB (R2015a) to compute the results. The absolute errors are computed to clarify the efficiency of the method.

Scopus (6)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Volterra Runge- Kutta Methods for Solving Nonlinear Volterra Integral Equations

In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.

Crossref
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Improved Runge-Kutta Method for Oscillatory Problem Solution Using Trigonometric Fitting Approach

This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions  and   for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency  is used. The novel method is more accurate than the conventional Runge-Ku

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Active Vibration Control of Cantilever Beam by Using Optimal LQR Controller

Many of mechanical systems are exposed to undesired vibrations, so designing an active vibration control (AVC) system is important in engineering decisions to reduce this vibration. Smart structure technology is used for vibration reduction. Therefore, the cantilever beam is embedded by a piezoelectric (PZT) as an actuator. The optimal LQR controller is designed that reduce the vibration of the smart beam by using a PZT element.  

In this study the main part is to change the length of the aluminum cantilever beam, so keep the control gains, the excitation, the actuation voltage, and mechanical properties of the aluminum beam for each length of the smart cantilever beam and observe the behavior and effec

... Show More
Crossref (6)
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing Neural Network

       In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.

         

... Show More
Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fractional Pantograph Delay Equations Solving by the Meshless Methods

This work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Single Well Coning Problem and Applicable Solutions

One of the most important and common problems in petroleum engineering; reservoir, and production engineering is coning; either water or gas coning. Almost 75% of the drilled wells worldwide contains this problem, and in Iraq water coning problem is much wider than the gas coning problem thus in this paper we try to clarify most of the reasons causing water coning and some of applicable solutions to avoid it using the simulation program (CMG Builder) to build a single well model considering an Iraqi well in north of Iraq black oil field with a bottom water drive, Coning was decreased by 57% by dividing into sub-layers (8) layers rather than (4) layers, also it was decreased (Coning) by 45% when perforation numbers and positions was chang

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Estimating the Rate of Occurrence of Extreme value process Using Classical and Intelligent Methods with Application: nonhomogeneous Poisson process with intelligent

     In this paper, the propose is to use the xtreme value distribution as the rate of occurrence of the non-homogenous Poisson process, in order to improve the rate of occurrence of the non-homogenous process, which has been called the Extreme value Process. To estimate the parameters of this process, it is proposed to use the Maximum Likelihood method, Method of Moment and a smart method represented by the Artificial Bee Colony:(ABC) algorithm to reach an estimator for this process which represents the best data representation. The results of the three methods are compared through a simulation of the model, and it is concluded that the estimator of (ABC) is better than the estimator of the maximum likelihood method and method of mo

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Extend Differential Transform Methods for Solving Differential Equations with Multiple Delay

In this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.

 

View Publication Preview PDF