An evaluation was achieved by designing a matlab program to solve Kepler’s equation of an elliptical orbit for methods (Newton-Raphson, Danby, Halley and Mikkola). This involves calculating the Eccentric anomaly (E) from mean anomaly (M=0°-360°) for each step and for different values of eccentricities (e=0.1, 0.3, 0.5, 0.7 and 0.9). The results of E were demonstrated that Newton’s- Raphson Danby’s, Halley’s can be used for e between (0-1). Mikkola’s method can be used for e between (0-0.6).The term that added to Danby’s method to obtain the solution of Kepler’s equation is not influence too much on the value of E. The most appropriate initial Gauss value was also determined to be (En=M), this initial value gave a good result for (E) for these methods regardless the value of e to increasing the accuracy of E. After that the orbital elements converting into state vectors within one orbital period within time 50 second, the results demonstrated that all these four methods can be used in semi-circular orbit, but in case of elliptical orbit Danby’s and Halley’s method use only for e ≤ 0.7, Mikkola’s method for e ≤ 0.01 while Newton-Raphson uses for e < 1, which considers more applicable than others to use in semi-circular and elliptical orbit. The results gave a good agreement as compared with the state vectors of Cartosat-2B satellite that available on Two Line Element (TLE).
A comparative study was carried out to evaluate alkaloid antibacterial activity which was extracted from the root bark Punica granatum L. by liquid membrane techniques (SA) and organic solvent traditional techniques (SB). The screening of the antimicrobial activity was conducted by agar well diffusion method against Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis at three concentration levels (5, 10 and 15 mg/ml). Alkaloid extracts were analyzed by a high performance liquid chromatography (HPLC) method. Among the tested extractions, SB showed the highest antibacterial activity against all five bacterial strains, especially at 15 mg/ml concentration. However, all the B type solution
... Show MoreRecovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.
<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>
The present work represents a theoretical study for the correction of spherical aberration of an immersion lens of axial symmetry operating under the effect of space charge, represented by a second order function and preassigned magnification conditions in a focusing of high current ion beams. The space charge depends strongly on the value of the ionic beam current which is found to be very effective and represents an important factor effecting the value of spherical aberration .The distribution of the space charge was measured from knowing it's density .It is effect on the trajectory of the ion beam was studied. To obtain the trajectories of the charged particles which satisfy the preassined potential the axial electrostatic potential w
... Show MoreDetermination and evaluation of principal minerals in Negella sativa by atomic absorption technical methods were showed, using wet ashing method. This work was done on Negella sativa because of wide using of this plant in many formulations ( in food or medicine ).two types of atomic absorptions were used : first, flame atomic absorption spectroscopy, for minerals of high concentrations such as, Na, Mg, K, Fe, Ca, Li, Ni, Zn, Mn, Cu. Second, flameless atomic absorption spectroscopy, for minerals of low concentrations such as, Al, Si, V, B, Pb, Co, Cd, Cr ,Si, Hg, Sn .The results showed the existence of many minerals in Negella sativa useful to human sanity with acceptable dietary allowance. On other side, the presence of harmful m
... Show MoreAbstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show MoreThis study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim
... Show More