This study aims to investigate the features of stellar-gaseous kinematics and dynamics mass using scaling coefficient relationships (such as the Faber–Jackson relation (FJR)) of two samples of elliptical and lenticular galaxies. These two samples of 80 ellipticals and 97 lenticulars were selected from previous literature works. The Statistical Package for Social Sciences )SPSS( and Matrix Laboratory (MATLAB) program were used to find out the associations of multiple factors under investigation such as main kinematic properties of the gaseous-stellar (effective radius Re, surface density within the effective radius (Ʃeff) , stellar mass in the blue band (Mstar (B)), gas mass ( Mgas), dynamic (Mdyn) and baryonic (Mbar), supermassiv
... Show MoreIn this work, a new formula of intensity distribution in image plane of elliptical object was founded (Elliptical spread function), by using optical system including circular aperture. The Gauss quadrature method of numerical integral was used for calculating equation's integrals. Curves are shown for system having focal error and intensity distribution in focal axis.
The problem of dark matter in galaxies is still one of the most important unsolved problems in the contemporary extragalactic astronomy and cosmology. The existence of a significant dynamic difference between the visible mass and the conventional mass of galaxies firmly establishes observational result. In this paper an unconventional explanation will be tested as an alternative to the cold dark matter hypothesis; which is called the modified Newtonian dynamics (MOND).
In this paper covers the simulation of galactic evolutions; where the two hypotheses are tested via the rotation curves. N-body simulation was carried adopting different configuration lik
the behavior of the first-order black and gray solitons propagtedin optical fiber in the presence of frequency chirp is studied analytically and numerically results show that phase profile of black solitons changes abruptly
In this research, the frequency-frequency interactions in chaotic systems has been experimentally and numerically studied. We have injected two frequencies on chaotic system where one of these frequencies is modulated with chaotic waveform and the other is untiled as a scanning frequency to find modulating frequency. It is observed that the Fast Fourier Transformation (FFT) peaks amplitude increased when the value of the two frequencies are matched. Thus, the modulating frequency could be observed, this leads to discover a new method to detect the modulating frequency without synchronization.
Thermonuclear reaction rates are calculated for three oxygen isotopes 14,15,16O in CNO cycles reactions occurring in red giant stars. These reactions are:, , , , and . Reaction rates have been calculated using Matlab codes, and related comparisons were made with NACRE II and Reaclib libraries, and the ratios of production to the destruction of 15,16O isotopes were found. Present reaction rate results were close to most of the selected reactions, and in some cases larger with a factor of 1-3. 15,16O production to destruction ratios indicated a special tendency to saturate at temperatures higher than ~ 2 GK, and these ratios were in general larger than 1 indicating an excess of producing such isotopes in re
... Show More