Preferred Language
Articles
/
ijs-11635
Segmenting the Dermatological Diseases Images by Developing the Range Operator
...Show More Authors

Medical image segmentation is a frequent processing step in image medical understanding and computer aided diagnosis. In this paper, development of range operator in image segmentation is proposed depending on dermatology infection. Three different block sizes have been utilized on the range operator and the developed ones to enhance the behavior of the segmentation process of medical images. To exploit the concept of range filtering, the extraction of the texture content of medical image is proposed. Experiment is conducted on different medical images and textures to prove the efficacy of our proposed filter was good results.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 13 2023
Journal Name
2023 3rd International Conference On Intelligent Cybernetics Technology & Applications (icicyta)
GPT-4 versus Bard and Bing: LLMs for Fake Image Detection
...Show More Authors

The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
Selective Image Encryption Based on DCT, Hybrid Shift Coding and Randomly Generated Secret Key
...Show More Authors

Most of today’s techniques encrypt all of the image data, which consumes a tremendous amount of time and computational payload. This work introduces a selective image encryption technique that encrypts predetermined bulks of the original image data in order to reduce the encryption/decryption time and the
computational complexity of processing the huge image data. This technique is applying a compression algorithm based on Discrete Cosine Transform (DCT). Two approaches are implemented based on color space conversion as a preprocessing for the compression phases YCbCr and RGB, where the resultant compressed sequence is selectively encrypted using randomly generated combined secret key.
The results showed a significant reduct

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (5)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Image Compression Using Mapping Transform with Pixel Elimination
...Show More Authors

     In today's world, digital image storage and transmission play an essential role,where images are mainly involved in data transfer. Digital images usually take large storage space and bandwidth for transmission, so image compression is important in data communication. This paper discusses a unique and novel lossy image compression approach. Exactly 50% of image pixels are encoded, and other 50% pixels are excluded. The method uses a block approach. Pixels of the block are transformed with a novel transform. Pixel nibbles are mapped as a single bit in a transform table generating more zeros, which helps achieve compression. Later, inverse transform is applied in reconstruction, and a single bit value from the table is rem

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Feb 27 2024
Journal Name
Tem Journal
Supervised Classification Accuracy Assessment Using Remote Sensing and Geographic Information System
...Show More Authors

Assessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,

... Show More
View Publication Preview PDF
Clarivate Crossref
Publication Date
Thu Dec 13 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Evaluation of Women's Knowledge about Risk Factors and Early Detection of Breast Cancer at Ibn Rushd College of Education in Baghdad University
...Show More Authors

Objective: Evaluation of women's knowledge about risk factors and early detection of breast cancer at
Ibn Rushd college of education in Baghdad University.
Methodology: The study sample included (184) women in the Ibn Rushd College / University of
Baghdad, whose age ranged between (17-58) years. Data were collected through a structured
questionnaire prepared by the National Cancer Research Center which were answered during a scientific
symposium about breast cancer. The score was calculated by correcting the results of the answer, giving
one score for each correct answer and then estimating the level of knowledge and inputting all data in a
statistical program.
Results: The results showed limited level of women's

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Hybrid Fuzzy Logic and Artificial Bee Colony Algorithm for Intrusion Detection and Classification
...Show More Authors

In recent years, with the growing size and the importance of computer networks, it is very necessary to provide adequate protection for users data from snooping through the use of one of the protection techniques: encryption, firewall and intrusion detection systems etc. Intrusion detection systems is considered one of the most important components in the computer networks that deal with Network security problems. In this research, we suggested the intrusion detection and classification system through merging Fuzzy logic and Artificial Bee Colony Algorithm. Fuzzy logic has been used to build a classifier which has the ability to distinguish between the behavior of the normal user and behavior of the intruder. The artificial bee colony al

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 28 2020
Journal Name
Iraqi Journal Of Science
Effect of levels in Dual Tree Complex Wavelet Transform when design Universal image stego-analytic
...Show More Authors

Universal image stego-analytic has become an important issue due to the natural images features curse of dimensionality. Deep neural networks, especially deep convolution networks, have been widely used for the problem of universal image stegoanalytic design. This paper describes the effect of selecting suitable value for number of levels during image pre-processing with Dual Tree Complex Wavelet Transform. This value may significantly affect the detection accuracy which is obtained to evaluate the performance of the proposed system. The proposed system is evaluated using three content-adaptive methods, named Highly Undetetable steGO (HUGO), Wavelet Obtained Weights (WOW) and UNIversal WAvelet Relative Distortion (UNIWARD).
The obtain

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
An Improved Probability Density Function (PDF) for Face Skin Detection
...Show More Authors

      Face Detection by skin color in the field of computer vision is a difficult challenge. Detection of human skin focuses on the identification of pixels and skin-colored areas of a given picture. Since skin colors are invariant in orientation and size and rapid to process, they are used in the identification of human skin. In addition features like ethnicity, sensor, optics and lighting conditions that are different are sensitive factors for the relationship between surface colors and lighting (an issue that is strongly related to color stability). This paper presents a new technique for face detection based on human skin. Three methods of Probability Density Function (PDF) were applied to detect the face by skin color; these ar

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sat May 08 2021
Journal Name
Iraqi Journal Of Science
Automated Deception Detection Systems, a Review
...Show More Authors

Humans use deception daily since it can significantly affect their life and provide a getaway solution for any undesired situation. Deception is either related to low-stakes (e.g. innocuous) or high-stakes (e.g. with harmful situations). Deception investigation importance has increased, and it became a critical issue over the years with the increase of security levels around the globe. Technology has made remarkable achievements in many human life fields, including deception detection. Automated deception detection systems (DDSs) are widely used in different fields, especially for security purposes. The DDS is comprised of multiple stages, each of which should be built/trained to perform intelligently so that the whole system can give th

... Show More
View Publication Preview PDF
Crossref (2)
Scopus Crossref