Cabrera and Mohammed proved that the right and left bounded algebras of quotients and of norm ideal on a Hilbert space are equal to Banach algebra of all bounded linear operators on . In this paper, we prove that where is a norm ideal on a complex Banach space .
A study carried out to prepare Hg1-xCdxTe compound and to see the effect on increasing the percentage of x on the compound structure by using x-ray diffraction and atomic absorption for 0
CdO:NiO/Si solar cell film was fabricated via deposition of CdO:NiO in different concentrations 1%, 3%, and 5% for NiO thin films in R.T and 723K, on n-type silicon substrate with approximately 200 nm thickness using pulse laser deposition. CdO:NiO/n-Si solar cell photovoltaic properties were examined under 60 mW/cm2 intensity illumination. The highest efficiency of the solar cell is 2.4% when the NiO concentration is 0.05 at 723K.
Let be an n-Banach space, M be a nonempty closed convex subset of , and S:M→M be a mapping that belongs to the class mapping. The purpose of this paper is to study the stability and data dependence results of a Mann iteration scheme on n-Banach space
In this research, the Williamson-Hall method and of size-strain plot method was employed to analyze X- ray lines for evaluating the crystallite size and lattice strain and of cadmium oxide nanoparticles. the crystallite size value is (15.2 nm) and (93.1 nm) and lattice strain (4.2 x10−4 ) and (21x10−4) respectively. Also, other methods have been employed to evaluate the crystallite size. The current methods are (Sherrer and modified Sherrer methods ) and their results are (14.8 nm) and (13.9nm) respectively. Each method of analysis has a different result because the alteration in the crystallite size and lattice strain calculated according to the Williamson-Hall and size-strain plot methods shows that the non-uniform strain in nan
... Show MoreIn this paper the chain length of a space of fuzzy orderings is defined, and various properties of this invariant are proved. The structure theorem for spaces of finite chain length is proved. Spaces of Fuzzy Orderings Throughout X = (X,A) denoted a space of fuzzy orderings. That is, A is a fuzzy subgroup of abelian group G of exponent 2. (see [1] (i.e. x 2 = 1,  x  G), and X is a (non empty) fuzzy subset of the character group ï£ (A) = Hom(A,{1,–1}) satisfying: 1. X is a fuzzy closed subset of ï£ (A). 2.  an element e  A such that ï³(e) = – 1  ï³ ïƒŽ X. 3. Xïž :={a  A\ ï³(a) = 1  ï³ ïƒŽ X} = 1. 4. If f and g are forms over A and if x  D(
... Show MoreSufficient conditions for boundary controllability of nonlinear system in quasi-Banach spaces are established. The results are obtained by using the strongly continuous semigroup theory and some techniques of nonlinear functional analysis, such as, fixed point theorem and quasi-Banach contraction principle theorem. Moreover, we given an example which is provided to illustrate the theory.
The present work focuses on the changing of the structural characteristics of the grown materials through different material characterization methods. Semiconductor CdSxSe 1-x nano crystallines have been synthesized by chemical vapor depostion. (X- ray Diffraction; XRD), (Field Emission Scanning Electron Microscopy; FESEM), measured the characterization of Semiconductor CdSxSe1-x nano crystallines. The optical properties of semiconductor CdSxSe1-x nanocrystallines have been studied by the photoluminescence (PL) (He-Cd pulsed ultraviolet laser at 325nm excitation wavelength) at room temperature. The results showed the change rule of photoluminsence peak at different S
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of societie
... Show More