Let be an n-Banach space, M be a nonempty closed convex subset of , and S:M→M be a mapping that belongs to the class mapping. The purpose of this paper is to study the stability and data dependence results of a Mann iteration scheme on n-Banach space
Let Y be a"uniformly convex n-Banach space, M be a nonempty closed convex subset of Y, and S:M→M be adnonexpansive mapping. The purpose of this paper is to study some properties of uniform convex set that help us to develop iteration techniques for1approximationjof"fixed point of nonlinear mapping by using the Mann iteration processes in n-Banachlspace.
In this paper, we introduce new concepts that relates to soft space based on work that was previously presented by researchers in this regard. First we give the definition of Soft Contraction Operator and some examples. After that we introduce the concepts of soft Picard iteration and soft Mann iteration processes. We also give some examples to illustrate them.
Many concepts in normed spaces have been generalized in soft normed spaces. One of the important concepts is the concept of stability of soft iteration in soft normed spaces. We discuss this concept by giving some lemmas that are used to prove some theorems about stability of soft i
... Show MoreIn this essay, we utilize m - space to specify mX-N-connected, mX-N-hyper connected and mX-N-locally connected spaces and some functions by exploiting the intelligible mX-N-open set. Some instances and outcomes have been granted to boost our tasks.
This paper contains an equivalent statements of a pre- space, where are considered subsets of with the product topology. An equivalence relation between the preclosed set and a pre- space, and a relation between a pre- space and the preclosed set with some conditions on a function are found. In addition, we have proved that the graph of is preclosed in if is a pre- space, where the equivalence relation on is open.
On the other hand, we introduce the definition of a pre-stable ( pre-stable) set by depending on the concept of a pre-neighborhood, where we get that every stable set is pre-stable. Moreover, we obtain that
... Show MoreIn this paper the concept of (m, n)- fully stable Banach Algebra-module relative to ideal (F − (m, n) − S − B − A-module relative to ideal) is introducing, we study some properties of F − (m, n) − S − B − A-module relative to ideal and another characterization is given
In this paper, we give new results and proofs that include the notion of norm attainment set of bounded linear operators on a smooth Banach spaces and using these results to characterize a bounded linear operators on smooth Banach spaces that preserve of approximate - -orthogonality. Noting that this work takes brief sidetrack in terms of approximate - -orthogonality relations characterizations of a smooth Banach spaces.
In this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
In this paper, we introduced some fact in 2-Banach space. Also, we define asymptotically non-expansive mappings in the setting of 2-normed spaces analogous to asymptotically non-expansive mappings in usual normed spaces. And then prove the existence of fixed points for this type of mappings in 2-Banach spaces.
In this paper, we will give another class of normal operator which is (K-N)*
quasi-n-normal operator in Hilbert space, and give some properties of this concept
as well as discussion the relation between this class with another class of normal
operators.
In this paper, we introduce new definitions of the - spaces namely the - spaces Here, and are natural numbers that are not necessarily equal, such that . The space refers to the n-dimensional Euclidean space, refers to the quaternions set and refers to the N-dimensional quaternionic space. Furthermore, we establish and prove some properties of their elements. These elements are quaternion-valued N-vector functions defined on , and the spaces have never been introduced in this way before.