In this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d ≠ 0 such that, for each x R, either d(x) = 0 or d(x) is
invertible in R, then R must be one of the following: (i) a division ring D, (ii) D 2 ,
the ring of 2×2 matrices over D, (iii) D[x]/(x ) 2
where char D = 2, d (D) = 0 and
d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is
possible if and only if D does not contain all quadratic extensions of Z, the center of
D.
this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d ≠ 0 such that, for each x R, either d(x) = 0 or d(x) is
invertible in R, then R must be one of the following: (i) a division ring D, (ii) D 2 ,
the ring of 2×2 matrices over D, (iii) D[x]/(x ) 2
where char D = 2, d (D) = 0 and
d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is
possible if and only if D does not contain all quadratic extensions of Z, the center of
D.
Let M be a weak Nobusawa -ring and γ be a non-zero element of Γ. In this paper, we introduce concept of k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, and Jordan generalized k-reverse derivation of Γ-ring, and γ-homomorphism, anti-γ-homomorphism of M. Also, we give some commutattivity conditions on γ-prime Γ-ring and γ-semiprime Γ-ring .
In this paper, we study the concepts of generalized reverse derivation, Jordan
generalized reverse derivation and Jordan generalized triple reverse derivation on -
ring M. The aim of this paper is to prove that every Jordan generalized reverse
derivation of -ring M is generalized reverse derivation of M.
Let be a prime ring, be a non-zero ideal of and be automorphism on. A mapping is called a multiplicative (generalized) reverse derivation if where is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized) reverse derivation satisfying any one of the properties:
for all x, y
Let M be ,-ring and X be ,M-module, Bresar and Vukman studied orthogonal
derivations on semiprime rings. Ashraf and Jamal defined the orthogonal derivations
on -rings M. This research defines and studies the concepts of orthogonal
derivation and orthogonal generalized derivations on ,M -Module X and introduces
the relation between the products of generalized derivations and orthogonality on
,M -module.
In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
In this paper the centralizing and commuting concerning skew left -derivations and skew left -derivations associated with antiautomorphism on prime and semiprime rings were studied and the commutativity of Lie ideal under certain conditions were proved.
In this paper we show the nilpotency of nilpotent derivation of simeprime Γ-ring with characteristic 2 must be a power of 2 and we show the nilpotency of a nilpotent derivation of simeprime Γ-ring is either odd or a power of 2 without torsion condition.
Despite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
We define a new concept, called " generalized right -derivation", in near-ring and obtain new essential results in this field. Moreover we improve this paper with examples that show that the assumptions used are necessary.