Preferred Language
Articles
/
ijs-6002
NILPOTENCY OF DERIVATIONS

In this paper we show the nilpotency of nilpotent derivation of simeprime Γ-ring with characteristic 2 must be a power of 2 and we show the nilpotency of a nilpotent derivation of simeprime Γ-ring is either odd or a power of 2 without torsion condition.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Nilpotency of Centralizers in Prime Rings

Nilpotency of Centralizers in Prime Rings

View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Orthogonal Derivations and Orthogonal Generalized Derivations on - Modules

Let M be ,-ring and X be ,M-module, Bresar and Vukman studied orthogonal
derivations on semiprime rings. Ashraf and Jamal defined the orthogonal derivations
on -rings M. This research defines and studies the concepts of orthogonal
derivation and orthogonal generalized derivations on ,M -Module X and introduces
the relation between the products of generalized derivations and orthogonality on
,M -module.

View Publication Preview PDF
Publication Date
Thu Nov 29 2018
Journal Name
Iraqi Journal Of Science
View Publication Preview PDF
Publication Date
Mon May 15 2023
Journal Name
Iraqi Journal Of Science
On Jordan Generalized Reverse Derivations on -rings

In this paper, we study the concepts of generalized reverse derivation, Jordan
generalized reverse derivation and Jordan generalized triple reverse derivation on -
ring M. The aim of this paper is to prove that every Jordan generalized reverse
derivation of -ring M is generalized reverse derivation of M.

View Publication Preview PDF
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
(,)- Strongly Derivations Pairs on Rings

        Let R be an associative ring. In this paper we present the definition of (s,t)- Strongly derivation pair and Jordan (s,t)- strongly derivation pair on a ring R, and study the relation between them. Also, we study prime rings, semiprime rings, and rings that have commutator left nonzero divisior with (s,t)- strongly derivation pair, to obtain a (s,t)- derivation. Where s,t: R®R are two mappings of R.

View Publication Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Reverse Derivations With Invertible Values

In this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d ≠ 0 such that, for each x R, either d(x) = 0 or d(x) is
invertible in R, then R must be one of the following: (i) a division ring D, (ii) D 2 ,
the ring of 2×2 matrices over D, (iii) D[x]/(x ) 2
where char D = 2, d (D) = 0 and
d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is
possible if and only if D does not contain all quadratic extensions of Z, the center of
D.

View Publication Preview PDF
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Reverse Derivations With Invertible Values

this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d ≠ 0 such that, for each x R, either d(x) = 0 or d(x) is
invertible in R, then R must be one of the following: (i) a division ring D, (ii) D 2 ,
the ring of 2×2 matrices over D, (iii) D[x]/(x ) 2
where char D = 2, d (D) = 0 and
d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is
possible if and only if D does not contain all quadratic extensions of Z, the center of
D.

View Publication Preview PDF
Publication Date
Wed Jan 12 2022
Journal Name
Iraqi Journal Of Science
Jordan Permuting 3-Derivations of Prime Rings

The main purpose of this work is to generalize Daif's result by introduceing the concept of Jordan (α β permuting 3-derivation on Lie ideal and generalize these result by introducing the concept of generalized Jordan (α β permuting 3-derivation 

View Publication Preview PDF
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Generalized Permuting 3-Derivations of Prime Rings

This work generalizes Park and Jung's results by introducing the concept of generalized permuting 3-derivation on Lie ideal.

View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Jordan left (?,?) -derivations Of ?-prime rings

It was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.

Crossref
View Publication Preview PDF