Preferred Language
Articles
/
ijs-11328
On δ-small M-Projective Modules
...Show More Authors

In this paper we study the concepts of δ-small M-projective module and δ-small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
ON RICKART MODULES
...Show More Authors

Gangyong Lee, S.Tariq Rizvi, and Cosmin S.Roman studied Rickart modules.

The main purpose of this paper is to develop the properties of Rickart modules .

We prove that each injective and prime module is a Rickart module. And we give characterizations of some kind of rings in term of Rickart modules.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
On Goldie extending modules
...Show More Authors

On Goldie 

View Publication Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
On µ-lifting Modules
...Show More Authors

Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that AD and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
On Goldie lifting modules
...Show More Authors

On Goldie lifting modules

View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
On Annihilator-Extending Modules
...Show More Authors

    Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as  we discuss the relation between this concept and some other related concepts.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Semi -T- Small Submodules
...Show More Authors

Let  be a ring with identity and  be a submodule of a left - module . A submodule  of  is called - small in  denoted by , in case for any submodule  of ,  implies .  Submodule  of  is called semi -T- small in , denoted by , provided for submodule  of ,  implies that . We studied this concept which is a generalization of the small submodules and obtained some related results

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sat Mar 06 2010
Journal Name
J. Of University Of Anbar For Pure Science
Some Results on Epiform Modules
...Show More Authors

The concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.

Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Italian Journal Of Pure And Applied Mathematics
A note on (m, n)-full stability Banach algebra modules relative to an ideal H of Am×n
...Show More Authors

In this paper the concept of (m, n)- fully stable Banach Algebra-module relative to ideal (F − (m, n) − S − B − A-module relative to ideal) is introducing, we study some properties of F − (m, n) − S − B − A-module relative to ideal and another characterization is given

Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
On Purely –Extending Modules
...Show More Authors

In this note we consider a generalization of the notion of a purely extending
modules, defined using y– closed submodules.
We show that a ring R is purely y – extending if and only if every cyclic nonsingular
R – module is flat. In particular every nonsingular purely y extending ring is
principal flat.

View Publication Preview PDF
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
Couniform Modules
...Show More Authors

In this paper, we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.

View Publication Preview PDF
Crossref (3)
Crossref