This paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate analytical solutions have been constructed using Adomain decomposition method under the assumption of long wave boundary layer type approximation and low Reynolds number. The effect of each of relaxation time, fractional parameters, Reynolds number, Froude number, inclination of channel and amplitude on the pressure difference, friction force and stream function along one wavelength are received and analyzed.
The present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.
In this research, the effect of the rotation variable on the peristaltic flow of Sutterby fluid in an asymmetric channel with heat transfer is investigated. The modeling of mathematics is created in the presence of the effect of rotation, using constitutive equations following the Sutterby fluid model. In flow analysis, assumptions such as long wave length approximation and low Reynolds number are utilized. The resulting nonlinear equation is numerically solved using the perturbation method. The effects of the Grashof number, the Hartmann number, the Hall parameter, the magnetic field, the Sutterby fluid parameter, and heat transfer analysis on the velocity and the pressure gradient are analyzed graphically. Utilizing MATHEMATIC
... Show MoreThe analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
The present paper concerned with study the of combined electro-osmotic peristaltic transport with heat and mass transfer which is represented by the Soret and Dufour phenomenon with the presence of the Joule electrothermal heating through a microchannel occupy by Rabinowitsch fluid. The unsteady two-dimensional governing equations for flow with energy and concentration conservation have been formed in a Cartesian coordinate system and the lubrication theory is applied to modify the relevant equations to the problem. The Debye-Hukel linearization approximation is utilizing to modify the electrohydrodynamics problem. The expressions for the axial velocity, the temperature profile, the concentration profile, and the volumetric flow rate are
... Show MoreIn this research, we studied the impact of Magnetohydrodynamic (MHD) on Jeffrey fluid with porous channel saturated with temperature-dependent viscosity (TDV). It is obtained on the movement of fluid flow equations by using the method of perturbation technique in terms of number Weissenberg ( ) to get clear formulas for the field of velocity. All the solutions of physical parameters of the Reynolds number , Magnetic parameter , Darcy parameter , Peclet number and are discussed under the different values, as shown in the plots.
The aim of this paper is to analyzed unsteady heat transfer for magnetohydrodynamic (MHD) flow of a second grade fluid in a channel with porous medium. The equations which was used to describe the flow are the momentum and energy, these equations were written to get thier non dimentional form. Homotopy analysis method (HAM) is employed to obtain a semi-analytical solutions for velocity and heat transfer fields. The effect of each dimensionless parameter upon the velocity and temperature distributions is analyzed and shown graphically by using MATHEMATICA package.
A mathematical model was created to study the influences of Hall current and Joule heating with wall slip conditions on peristaltic motion of Rabinowitsch fluid model through a tapered symmetric channel with Permeable Walls. The governing equations are simplified under low Reynolds number and the long-wavelength approximations. The perturbation method is used to solve the momentum equation. The physiological phenomena are studied for a certain set of pertinent parameters. The effects offered here show that the presence of the hall parameter, coefficient of pseudo-plasticity, and Hartman number impact the flow of the fluid model. Additional, study reveals that a height in the Hall parameter and the velocity slip parameter incre
... Show MoreThis paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finall
... Show MoreWaveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis a