This paper aims to study the asymptotic stability of the equilibrium points of the index 2 and index 3 Hesenberg differential algebraic equations. The problem reformulated to an equivalent explicit differential algebraic equations system, so the asymptotic stability is easily investigated. The singular points such as impasse points and singularity induced bifurcation points are identified in this kind of differential algebraic equations by using conclusion of the explicit differential algebraic equations.
It is often noted that disordered materials have different chemical properties to their more “ordered” cousins. Quantifying these effects in terms of thermodynamics is challenging in part because disordered materials can be difficult to characterize and are frequently relatively unstable. During the course of our experiments to understand the effects of disorder in catalysts for water oxidation we observed that many disordered manganese and cobalt oxide water oxidation catalysts directly oxidized peroxide in contrast to their more ordered analogues which catalyzed its disproportionation, that is, MnO2+2H+ +H2O2! Mn2+ +2H2O+O2(oxidation) versus H2O2!H2O+1=2 O2(disproportionation). By measuring the efficiency for one reaction over the oth
... Show MoreThe purpose of this paper is to extend some results concerning generalized derivations to generalized semiderivations of 3-prime near rings.
3 BaTiO was prepared by mixing the components of 3 BaCO and 2 TiO by ratio [1:1] ، This paper is devoted to study the effect of radition on the electrical properties of 3 BaTiO . Some of prepared samples were exposed to fast neutrons   SMeV and   MeV14 . In addition ، Some samples were exposed to gamma – ray with dosage   Rad81.5 10  . The results showed that the exposition of some samples to fast neutrons   SMeV and   MeV14 lead to increase the electrical resistivity with the study of the effect of the addition of impurity on electrical resistivity . The addition of two compounds   2 3Yb O and   2 3Sm
... Show MoreLocalization is an essential demand in wireless sensor networks (WSNs). It relies on several types of measurements. This paper focuses on positioning in 3-D space using time-of-arrival- (TOA-) based distance measurements between the target node and a number of anchor nodes. Central localization is assumed and either RF, acoustic or UWB signals are used for distance measurements. This problem is treated by using iterative gradient descent (GD), and an iterative GD-based algorithm for localization of moving sensors in a WSN has been proposed. To localize a node in 3-D space, at least four anchors are needed. In this work, however, five anchors are used to get better accuracy. In GD localization of a moving sensor, the algo
... Show MoreThis booklet contains the basic data and graphs forCOVID-19 in Iraq during the first three months of thepandemic ( 24 February to 19 May - 2020 ) , It isperformed to help researchers regarding this health problem (PDF) Information Booklet COVID-19 Graphs For Iraq First 3 Months. Available from: https://www.researchgate.net/publication/341655944_Information_Booklet_COVID-19_Graphs_For_Iraq_First_3_Months#fullTextFileContent [accessed Oct 26 2024].
In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
This research deals with the design and simulation of a solar power system consisting of a KC200GT solar panel, a closed loop boost converter and a three phase inverter by using Matlab / Simulink. The mathematical equations of the solar panel design are presented. The electrical characteristics of the panel are tested at the values of 1000 for light radiation and 25 °C for temperature environment. The Proportional Integral (PI) controller is connected as feedback with the Boost converter to obtain a stable output voltage by reducing the oscillations in the voltage to charge a battery connected to the output of the converter. Two methods (Particle Swarm Optimization (PSO) and Zeigler- Nichols) are used for tuning
... Show MoreIn this study azo dye was prepared by the reaction of m-phenylendidiazonium chloride with methyl salicylate, the resultant compound was used as a ligand for complex formation with Fe+2, Cu+2, Zn+2, Ni+2 and Co+2 ions. The prepared ligand was characterized by H1NMR, UV-Vis., And FTIR spectroscopy, CHN analysis, in addition the complexes were characterized by TGA, UV-Vis., FTIR and conductivity methods. The results indicate that the ligand chelated through phenoxy and carboxyl groups as a O4 quadra dentate ligand, the Co complex complet its hexagon coordination by bonding with chlorine and the complex wouid be electrolytic in opposite with rest complexes.
We introduce in this paper, the notion of a 2-quasì-prime module as a generalization of quasi-prime module, we know that a module E over a ring R is called quasi-prime module, if (0) is quasi-prime submodule. Now, we say that a module E over ring R is a 2-quasi-prime module if (0) is 2-quasi-prime submodule, a proper submodule K of E is 2-quasi-prime submodule if whenever , and , then either or .
Many results about these kinds of modules are obtained and proved, also, we will give a characterization of these kinds of modules.
An R-module M is called a 2-regular module if every submodule N of M is 2-pure submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, [1]. This paper is a continuation of [1]. We give some conditions to characterize this class of modules, also many relationships with other related concepts are introduced.