Preferred Language
Articles
/
ijs-10718
Image Segmentation Using Superpixel Based Split and Merge Method
...Show More Authors

A super pixel can be defined as a group of pixels, which have similar characteristics, which can be very helpful for image segmentation. It is generally color based segmentation as well as other features like texture, statistics…etc .There are many algorithms available to segment super pixels like Simple Linear Iterative Clustering (SLIC) super pixels and Density-Based Spatial Clustering of Application with Noise (DBSCAN). SLIC algorithm essentially relay on choosing N random or regular seeds points covering the used image for segmentation. In this paper Split and Merge algorithm was used instead to overcome determination the seed point's location and numbers as well as other used parameters. The overall results were better from the SLIC method depending on single threshold, which control the segments number needed (like 0.2) to accomplish the task.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Split and Merge Regions of Satellite Images using the Non-Hierarchical Algorithm of Cluster Analysis
...Show More Authors

يعد التقطيع الصوري من الاهداف الرئيسة والضرورية في المعالجات الصورية للصور الرقمية، فهو يسعى الى تجزئة الصور المدروسة الى مناطق متعددة اكثر نفعاً تلخص فيها المناطق ذات الافادة لصور الاقمار الصناعية، وهي صور متعددة الاطياف ومجهزة من الاقمار الصناعية باستخدام مبدأ الاستشعار عن بعد والذي اصبح من المفاهيم المهمة التي تُعتمد تطبيقاته في اغلب ضروريات الحياة اليومية، وخاصة بعد التطورات المتسارعة التي شهد

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 04 2010
Journal Name
Journal Of The Faculty Of Medicine Baghdad
CT Image Segmentation Based on clustering Methods.
...Show More Authors

Background: image processing of medical images is major method to increase reliability of cancer diagnosis.
Methods: The proposed system proceeded into two stages: First, enhancement stage which was performed using of median filter to reduce the noise and artifacts that present in a CT image of a human lung with a cancer, Second: implementation of k-means clustering algorithm.
Results: the result image of k-means algorithm compared with the image resulted from implementation of fuzzy c-means (FCM) algorithm.
Conclusion: We found that the time required for k-means algorithm implementation is less than that of FCM algorithm.MATLAB package (version 7.3) was used in writing the programming code of our w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Merge Operation Effect On Image Compression Using Fractal Technique
...Show More Authors

Fractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.

View Publication Preview PDF
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Shadow Removal Using Segmentation Method
...Show More Authors

Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.

View Publication Preview PDF
Publication Date
Mon Feb 07 2022
Journal Name
Cogent Engineering
A partial image encryption scheme based on DWT and texture segmentation
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Dec 03 2012
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Window Size Changing on Satellite Image Segmentation Using 2D Fast Otsu Method
...Show More Authors

Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Window Size Changing on Satellite Image Segmentation Using 2D Fast Otsu Method
...Show More Authors

     Multispectral remote sensing image segmentation can be achieved using a multithresholding technique. This paper studies the effect of changing the window size of the two dimensional (2D) fast Otsu algorithm that presented by Zhang. From the results, it shown that this method behaves as a search machine for the valleys (an automatic threshold), between the gray levels of the histogram with changing the size of slide window.  

Keywords Image Segmentation, (2D) Fast Otsu method, Multithresholding, Automatic thresholding, (2D) histogram image.

View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Modern Applied Science
Hybrid Methodology for Image Segmentation Based on Active Contour Module and Alpha-Shape Theory
...Show More Authors

The concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s

... Show More
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Medical Image Segmentation using Modified Interactive Thresholding Technique
...Show More Authors

Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Bio-inspired Computing – Theories And Applications
Image Segmentation Using Membrane Computing: A Literature Survey
...Show More Authors

View Publication
Scopus (10)
Crossref (5)
Scopus Crossref