Preferred Language
Articles
/
ijs-10572
Kolmogorov Turbulent Simulations of Photon Limited Images of Binary Stars
...Show More Authors

The autocorrelation function calculations have been carried out on photon-limited computer-simulated images of binary stars that recorded through kolmogorov atmospheric turbulence. The effect of the parameters of photon limited binary star on the variation of signal to noise, signal to background ratios, number of images that processed and the magnitude of binary stars are studied and mathematic equations are given to investigate this effect. The result indicates that signal to background ratio of photon limited images of a binary star is independent of the total number of recorded photons.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 26 2018
Journal Name
Iraqi Journal Of Science
Extraction of Vacant Lands for Baghdad City Using Two Classification Methods of Very High Resolution Satellite Images
...Show More Authors

The use of remote sensing technologies was gained more attention due to an increasing need to collect data for the environmental changes. Satellite image classification is a relatively recent type of remote sensing uses satellite imagery to indicate many key environment characteristics. This study aims at classifying and extracting vacant lands from high resolution satellite images of Baghdad city by supervised Classification tool in ENVI 5.3 program. The classification accuracy was 15%, which can be regarded as fairly acceptable given the difficulty of differentiating vacant land surfaces from other surfaces such as roof tops of buildings.

View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Dynamic Behavior of Pb(II) and Cr(III) Biosorption onto Dead Anaerobic Biomass in Fixed-Bed Column, Single and Binary Systems
...Show More Authors

The biosorption of lead (II) and chromium (III) onto dead anaerobic biomass (DAB) in single and binary systems has been studied using fixed bed adsorber. A general rate multi- component model (GRM) has been utilized to predict the fixed bed breakthrough curves for single and dual- component system. This model considers both external and internal mass transfer resistances as well as axial dispersion with non-liner multi-component isotherm (Langmuir model). The effects of important parameters, such as flow rate, initial concentration and bed height on the behavior of breakthrough curves have been studied. The equilibrium isotherm model parameters such as maximum uptake capacities for lead (II) and chromium (III) were found to be 35.12 and

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Design and Implementation of a Generalized N-Digit Binary-To-Decimal Converter on an FPGA Seven-Segment Display Using Verilog Hdl
...Show More Authors

It is often needed to have circuits that can display the decimal representation of a binary number and specifically in this paper on a 7-segment display. In this paper a circuit that can display the decimal equivalent of an n-bit binary number is designed and it’s behavior is described using Verilog Hardware Descriptive Language (HDL).
This HDL program is then used to configure an FPGA to implement the designed circuit.

View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
International Medical Journal
Visibility of mandibular canal on CBCT cross-sectional images in comparison with panoramic radiograph: Retrospective study
...Show More Authors

Scopus (2)
Scopus
Publication Date
Thu Mar 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Correction of Non-Uniform illumination for Biological Images Using Morphological Operation Assessing with Statistical Features Quality.
...Show More Authors

Non Uniform Illumination biological image often leads to diminish structures and inhomogeneous intensities of the image. Algorithm has been proposed using Morphological Operations different types of structuring elements including (dick, line, square and ball) with the same parameters of (15).To correct the non-uniform illumination and enhancement biological images, the non-uniform background illumination have been removed from image, using (contrast adjustment, histogram equalization and adaptive histogram equalization). The used basic approach to extract the statistical features values from gray level of co-occurrence matrices (GLCM) can show the typical values for features content of biological images that can be in form of shape or sp

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Comparative Study between Classical and Fuzzy Filters for Removing Different Types of Noise from Digital Images
...Show More Authors

The aim of this paper is to compare between classical and fuzzy filters for removing different types of noise in gray scale images. The processing used consists of three steps. First, different types of noise are added to the original image to produce a noisy image (with different noise ratios). Second, classical and fuzzy filters are used to filter the noisy image. Finally, comparing between resulting images depending on a quantitative measure called Peak Signal-to-Noise Ratio (PSNR) to determine the best filter in each case.
The image used in this paper is a 512 * 512 pixel and the size of all filters is a square window of size 3*3. Results indicate that fuzzy filters achieve varying successes in noise reduction in image compared to

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Wed Feb 14 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Segmentation moon images using different segmentation methods and isolate the lunar craters
...Show More Authors

Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and geology

... Show More
View Publication
Scopus Crossref
Publication Date
Thu May 30 2024
Journal Name
Iraqi Journal Of Science
A Review Study on Forgery and Tamper Detection Techniques in Digital Images
...Show More Authors

Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.

View Publication Preview PDF
Crossref