Preferred Language
Articles
/
ijs-1035
Almost Pure Ideals (Submodules) and Almost Regular Rings (Modules)
...Show More Authors

     Let R1be a commutative2ring with identity and M be a unitary R-module. In this6work we7present almost pure8ideal (submodule) concept as a9generalization of pure10ideal (submodule).  lso, we1generalize some9properties of8almost pure ideal (submodule). The 7study is almost regular6ring (R-module).

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
2-Regular Modules II
...Show More Authors

An R-module M is called a 2-regular module if every submodule N of M is 2-pure submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, [1]. This paper is a continuation of [1]. We give some conditions to characterize this class of modules, also many relationships with other related concepts are introduced.

View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
F-Approximately Regular Modules
...Show More Authors

We introduce in this paper the concept of an approximately pure submodule as a     generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module  is approximately pure, then  is called F-approximately regular. Further, many results about this concept are given.

View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 04 2011
Journal Name
Baghdad Science Journal
Approximate Regular Modules
...Show More Authors

There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.

View Publication Preview PDF
Crossref
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Quasi J-Regular Modules
...Show More Authors

Throughout this note, R is commutative ring with identity and M is a unitary R-module. In this paper, we introduce the concept of quasi J-  submodules as a     –  and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an R-module     J- module if every submodule of  is quasi J-pure. Many results about this concept

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
On some types of almost periodic point in Bi-Topological dynamcs
...Show More Authors

In this paper We introduce some new types of almost bi-periodic points in topological bitransfprmation groups and thier effects on some types of minimaliy in topological dynamics

View Publication Preview PDF
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Pure-Hollow Modules and Pure-Lifting Modules
...Show More Authors

   Let  be a commutative ring with identity, and  be a unitary left R-module. In this paper we, introduce and study a new class of modules called pure hollow (Pr-hollow) and pure-lifting (Pr-lifting). We give a fundamental, properties of these concept.  also, we, introduce some conditions under which the quotient and direct sum of Pr-lifting modules is Pr-lifting.

Scopus Crossref
Publication Date
Wed Mar 27 2019
Journal Name
Iraqi Journal Of Science
Properties of J- Regular modules
...Show More Authors

The present study introduces the concept of J-pure submodules as a generalization of pure submodules. We  study some of its basic  properties  and  by using this concept we  define the class of  J-regular modules,  where an R-module  M is called  J-regular module if every submodule of M is J-pure submodule. Many results about this concept are proved

View Publication Preview PDF
Publication Date
Tue Jan 01 2002
Journal Name
Iraqi Journal Of Science
On Regular Modules
...Show More Authors

Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.

Preview PDF
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
New Properties of Anti Fuzzy Ideals of Regular Semigroups
...Show More Authors

In this article, we study some properties of anti-fuzzy sub-semigroup, anti fuzzy left (right, two sided) ideal, anti fuzzy ideal, anti fuzzy generalized bi-ideal, anti fuzzy interior ideals and anti fuzzy two sided ideal of regular semigroup. Also, we characterized regular LA-semigroup in terms of their anti fuzzy ideal.

 

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semiessential Fuzzy Ideals and Semiuniform Fuzzy Rings
...Show More Authors

        Zadah in [1] introduced the notion of a fuzzy subset A of a nonempty set S as a mapping from S into [0,1], Liu in [2] introduced the concept of a fuzzy ring, Martines [3] introduced the notion of a fuzzy ideal of a fuzzy ring.         A non zero proper ideal I of a ring R is called an essential ideal if I  J  (0), for any non zero ideal J of R, [4].         Inaam in [5] fuzzified this concept to essential fuzzy ideal of fuzzy ring and gave its basic properties.         Nada in [6] introduced and studied notion of semiessential ideal in a ring R, where a non zero i

... Show More
View Publication Preview PDF