Let R1be a commutative2ring with identity and M be a unitary R-module. In this6work we7present almost pure8ideal (submodule) concept as a9generalization of pure10ideal (submodule). lso, we1generalize some9properties of8almost pure ideal (submodule). The 7study is almost regular6ring (R-module).
A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.
Let be a commutative ring with identity and a fixed ideal of and be an unitary -module.We say that a proper submodule of is -semi prime submodule if with . In this paper, we investigate some properties of this class of submodules. Also, some characterizations of -semiprime submodules will be given, and we show that under some assumptions -semiprime submodules and semiprime submodules are coincided.
Let R be an individual left R-module of the same type as W, with W being a ring containing one. W’s submodules N and K should be referred to as N and K, respectively that K ⊆ N ⊆ W if N/K <<_J (D_j (W)+K)/K, Then K is known as the D J-coessential submodule of Nin W as K⊆_ (Rce) N. Coessential submodule is a generalization of this idea. These submodules have certain interesting qualities, such that if a certain condition is met, the homomorphic image of D J- N has a coessential submodule called D J-coessential submodule.
Through this paper R represent a commutative ring with identity and all R-modules are unitary left R-modules. In this work we consider a generalization of the class of essential submodules namely annihilator essential submodules. We study the relation between the submodule and his annihilator and we give some basic properties. Also we introduce the concept of annihilator uniform modules and annihilator maximal submodules.
In this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.
In this paper, we will generalized some results related to centralizer concept on
prime and semiprime Γ-rings of characteristic different from 2 .These results
relating to some results concerning left centralizer on Γ-rings.
The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .
Let R be commutative Ring , and let T be unitary left .In this paper ,WAPP-quasi prime submodules are introduced as new generalization of Weakly quasi prime submodules , where proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either r tϵ C +soc or s tϵC +soc .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.
The main purpose of this paper is to investigate some results. When h is ï‡ -(ï¬ ,δ) – Derivation on prime Γ-near-ring G and K is a nonzero semi-group ideal of G, then G is commutative .
Let R be a commutative ring with identity and M an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is end-ï¹-prime if for each ï¡ ïƒŽ EndR(M) and x  M, if ï¡(x)  P, then either x  P + ï¹(P) or ï¡(M) ïƒ P + ï¹(P). Some of the properties of this concept will be investigated. Some characterizations of end-ï¹-prime submodules will be given, and we show that under some assumtions prime submodules and end-ï¹-prime submodules are coincide.