Preferred Language
Articles
/
ijs-1035
Almost Pure Ideals (Submodules) and Almost Regular Rings (Modules)
...Show More Authors

     Let R1be a commutative2ring with identity and M be a unitary R-module. In this6work we7present almost pure8ideal (submodule) concept as a9generalization of pure10ideal (submodule).  lso, we1generalize some9properties of8almost pure ideal (submodule). The 7study is almost regular6ring (R-module).

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
Weak Essential Submodules
...Show More Authors

A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
I-Semiprime Submodules
...Show More Authors

 Let  be a commutative ring with identity and a fixed ideal of  and  be an unitary -module.We say that a proper submodule  of  is -semi prime submodule if with . In this paper, we investigate some properties of this class of submodules. Also, some characterizations of -semiprime submodules will be given, and we show that under some assumptions -semiprime submodules and semiprime submodules are coincided.

View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Interdisciplinary Mathematics
DJ-coessential submodules
...Show More Authors

Let R be an individual left R-module of the same type as W, with W being a ring containing one. W’s submodules N and K should be referred to as N and K, respectively that K ⊆ N ⊆ W if N/K <<_J (D_j (W)+K)/K, Then K is known as the D J-coessential submodule of Nin W as K⊆_ (Rce) N. Coessential submodule is a generalization of this idea. These submodules have certain interesting qualities, such that if a certain condition is met, the homomorphic image of D J- N has a coessential submodule called D J-coessential submodule.

View Publication
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Annihilator Essential Submodules
...Show More Authors
Abstract<p>Through this paper R represent a commutative ring with identity and all R-modules are unitary left R-modules. In this work we consider a generalization of the class of essential submodules namely annihilator essential submodules. We study the relation between the submodule and his annihilator and we give some basic properties. Also we introduce the concept of annihilator uniform modules and annihilator maximal submodules.</p>
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
S-Coprime Submodules
...Show More Authors

  In this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.

View Publication Preview PDF
Publication Date
Mon Jan 10 2022
Journal Name
Iraqi Journal Of Science
Centralizers on Prime and Semiprime Γ-rings
...Show More Authors

In this paper, we will generalized some results related to centralizer concept on
prime and semiprime Γ-rings of characteristic different from 2 .These results
relating to some results concerning left centralizer on Γ-rings.

View Publication Preview PDF
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Jordan ?-Centralizers of Prime and Semiprime Rings
...Show More Authors

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .

View Publication Preview PDF
Crossref
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Approximaitly Quasi-Prime Submodules And Related Concepts
...Show More Authors

           Let R be  commutative Ring , and let T be  unitary left .In this paper ,WAPP-quasi prime submodules are introduced as  new generalization of Weakly quasi prime submodules , where  proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either  r tϵ C +soc   or  s tϵC +soc  .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.

View Publication Preview PDF
Crossref
Publication Date
Fri Mar 27 2020
Journal Name
Iraqi Journal Of Science
Γ-(,δ)-Derivation on Semi-Group Ideals in Prime Γ-Near-Ring: -(,δ)-derivations on Semi-group Ideals in Prime -
...Show More Authors

The main purpose of this paper is to investigate some results. When h is  -( ,δ) – Derivation on prime Γ-near-ring G and K is a nonzero semi-group ideal of G, then G is commutative .

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Sat Mar 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
End á´ª -Prime Submodules
...Show More Authors

      Let R be a commutative ring with identity and M  an unitary R-module. Let (M)  be the set of all submodules of M, and : (M)  (M)  {} be a function. We say that a proper submodule P of M is end--prime if for each   EndR(M) and x  M, if (x)  P, then either x  P + (P) or (M)  P + (P). Some of the properties of this concept will be investigated. Some characterizations of end--prime submodules will be given, and we show that under some assumtions prime submodules and end--prime submodules are coincide.

View Publication Preview PDF