Preferred Language
Articles
/
ijs-10045
Best Way to Detect Breast Cancer by UsingMachine Learning Algorithms
...Show More Authors

Breast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with missing value and without
missing value, where the missing value is one attribute is missing from one sample
for data set. The test result is show SMO is the best algorithm, especiallywhen the
research removes the samples that contained the missing value.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Local Search Algorithms for Multi-criteria Single Machine Scheduling Problem
...Show More Authors

   Real life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.

We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Wasit Journal Of Computer And Mathematics Science
Real time handwriting recognition system using CNN algorithms
...Show More Authors

Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition

... Show More
View Publication
Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Stability and Acceleration of Projection Algorithms
...Show More Authors

The focus of this paper is the presentation of a new type of mapping called projection Jungck zn- Suzuki generalized and also defining new algorithms of various types (one-step and two-step algorithms) (projection Jungck-normal N algorithm, projection Jungck-Picard algorithm, projection Jungck-Krasnoselskii algorithm, and projection Jungck-Thianwan algorithm). The convergence of these algorithms has been studied, and it was discovered that they all converge to a fixed point. Furthermore, using the previous three conditions for the lemma, we demonstrated that the difference between any two sequences is zero. These algorithms' stability was demonstrated using projection Jungck Suzuki generalized mapping. In contrast, the rate of convergenc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Convergence of Iterative Algorithms in Cat(0) Spaces
...Show More Authors

     In this article, results have been shown via using a general quasi contraction multi-valued mapping in Cat(0) space. These results are used to prove the convergence of two iteration algorithms to a fixed point and the equivalence of convergence. We also demonstrate an appropriate conditions to ensure that one is faster than others.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jun 16 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Optimization algorithms for transportation problems with stochastic demand
...Show More Authors

The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m

... Show More
View Publication
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fast Training Algorithms for Feed Forward Neural Networks
...Show More Authors

 The aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN

View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Review on Hybrid Swarm Algorithms for Feature Selection
...Show More Authors

    Feature selection represents one of the critical processes in machine learning (ML). The fundamental aim of the problem of feature selection is to maintain performance accuracy while reducing the dimension of feature selection. Different approaches were created for classifying the datasets. In a range of optimization problems, swarming techniques produced better outcomes. At the same time, hybrid algorithms have gotten a lot of attention recently when it comes to solving optimization problems. As a result, this study provides a thorough assessment of the literature on feature selection problems using hybrid swarm algorithms that have been developed over time (2018-2021). Lastly, when compared with current feature selection procedu

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Proposed Hybrid Sparse Adaptive Algorithms for System Identification
...Show More Authors

Abstract 

For sparse system identification,recent suggested algorithms are  -norm Least Mean Square (  -LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named  -ZA-LMS, 

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Improve topic modeling algorithms based on Twitter hashtags
...Show More Authors
Abstract<p>Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned</p> ... Show More
View Publication
Scopus (17)
Crossref (14)
Scopus Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Engineering
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi

... Show More
View Publication Preview PDF
Crossref