Preferred Language
Articles
/
ijs-7606
Review on Hybrid Swarm Algorithms for Feature Selection
...Show More Authors

    Feature selection represents one of the critical processes in machine learning (ML). The fundamental aim of the problem of feature selection is to maintain performance accuracy while reducing the dimension of feature selection. Different approaches were created for classifying the datasets. In a range of optimization problems, swarming techniques produced better outcomes. At the same time, hybrid algorithms have gotten a lot of attention recently when it comes to solving optimization problems. As a result, this study provides a thorough assessment of the literature on feature selection problems using hybrid swarm algorithms that have been developed over time (2018-2021). Lastly, when compared with current feature selection procedures, the majority of hybrid algorithms enhance classification accuracy.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Access
Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review
...Show More Authors

Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
A Survey on Feature Selection Techniques using Evolutionary Algorithms
...Show More Authors

     Feature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Wed Sep 23 2020
Journal Name
Artificial Intelligence Research
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
...Show More Authors

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe

... Show More
View Publication
Crossref
Publication Date
Sat Jul 06 2024
Journal Name
Multimedia Tools And Applications
Text classification based on optimization feature selection methods: a review and future directions
...Show More Authors

A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Engineering
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 16 2022
Journal Name
2022 Muthanna International Conference On Engineering Science And Technology (micest)
A hybrid feature selection technique using chi-square with genetic algorithm
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials & Continua
A New Hybrid Feature Selection Method Using T-test and Fitness Function
...Show More Authors

View Publication
Scopus (9)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Image Feature Extraction and Selection
...Show More Authors

Features are the description of the image contents which could be corner, blob or edge. Scale-Invariant Feature Transform (SIFT) extraction and description patent algorithm used widely in computer vision, it is fragmented to four main stages. This paper introduces image feature extraction using SIFT and chooses the most descriptive features among them by blurring image using Gaussian function and implementing Otsu segmentation algorithm on image, then applying Scale-Invariant Feature Transform feature extraction algorithm on segmented portions. On the other hand the SIFT feature extraction algorithm preceded by gray image normalization and binary thresholding as another preprocessing step. SIFT is a strong algorithm and gives more accura

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Computational And Theoretical Nanoscience
Solution for Multi-Objective Optimisation Master Production Scheduling Problems Based on Swarm Intelligence Algorithms
...Show More Authors

The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (11)
Scopus Crossref
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Modified Artificial immune system as Feature Selection
...Show More Authors

Feature selection algorithms play a big role in machine learning applications. There are several feature selection strategies based on metaheuristic algorithms. In this paper a feature selection strategy based on Modified Artificial Immune System (MAIS) has been proposed. The proposed algorithm exploits the advantages of Artificial Immune System AIS to increase the performance and randomization of features. The experimental results based on NSL-KDD dataset, have showed increasing in performance of accuracy compared with other feature selection algorithms (best first search, correlation and information gain).

View Publication Preview PDF