BaTiO3 thin films have been deposited on Si (111) and glass substrates by using pulsed laser deposition technique. The films were characterized by using X-ray diffraction, atomic force microscope and optical transmission spectra. The films growth on Si after annealing at 873K showed a polycrystalline nature, and exhibited tetragonal structure, while on glass substrate no growth was noticed at that temperature. UV-VIS transmittance measurements showed that the films are highly transparent in the visible wavelength region and near-infrared region for sample annealing on glass substrate. The optical gap of the film were calculated from the curve of absorption coefficient (αhν) 2 vs. hν and was found tobe 3.6 eV at substrate temperature 573K, and this value increases up to 3.69 eV at annealing temperature of (673K), but the refractive index was found to decrease from 2.4 to 2.2 at that temperature
Porcelain is one of the most important ceramic materials with a wide range of traditional and technical applications. Since most mixtures of porcelain have a high sintering temperature, bentonite has been added in this research to improve the characteristics of sintering and burning. The porcelain mixture consisted of the following Iraqi raw materials: 30% wt kaolin, 30 wt% non-plastic clay (grog), 10% wt sodium feldspar, 10 wt% potassium feldspar and 20 wt% flint. After the mechanical mixing process and transfer the powder mixture to the slurry by adding distilled water, then different weight percentage of the sodium bentonite(0, 2.5, 5, 7.5 and 10) wt% was added. The specimens were prepared by using the solid casting m
... Show MoreAlginate from Large brown seaweeds act as natural polymer has been investigated as polymer and has been added to concrete in different percentages ( 0% , 0.5% , 1% and 1.5% ) by the cement weight and the study show the effect of using alginate biopolymer admixtures on some of the fresh properties of the concrete (slump & the density fresh) also in the hardened state ( Compressive strength , Splitting tensile strength and Flexural strength ) at 28 days. The mix proportion was (1:2.26:2.26) (cement: sand: gravel) respectively and at constant w/c equal to 0.47. The results indicate that the use of alginate as a percent of the cement weight possess a positive effect on fresh properties of co
... Show MoreIn this work, a composite material was prepared from Low-density polyethylene (LDPE) with different weight percent of grain and calcinations kaolin at temperature of (850oC) using single screw extruder and a mixing machine operated at a temperature between (190-200oC). Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%). It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength
... Show MoreNuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investiga
... Show MoreToday the NOMA has exponential growth in the use of Optical Visible Light Communication (OVLC) due to good features such as high spectral efficiency, low BER, and flexibility. Moreover, it creates a huge demand for electronic devices with high-speed processing and data rates, which leads to more FPGA power consumption. Therefore; it is a big challenge for scientists and researchers today to recover this problem by reducing the FPGA power and size of the devices. The subject matter of this article is producing an algorithm model to reduce the power consumption of (Field Programmable Gate Array) FPGA used in the design of the Non-Orthogonal Multiple Access (NOMA) techniques applied in (OVLC) systems combined with a blue laser. However, The po
... Show MoreI
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreThe present work focuses on the experimental implementation of one of the fiber optical sensors, the optical glass fiber built on surface Plasmon resonance. A type of optical glass fiber was used in this work, single-mode no-core fiber with pre-tapering diameter: (125.1 μm) and (125.3 μm), respectively. The taper method can be tested by measuring the output power of the optical fiber before and after chemical etching to show the difference in cladding diameter due to the effect of hydrofluoric acid with increasing time for the taper process. The optical glass fiber sensor can be fabricated using the taper method to reduce the cladding diameter of the fibers to (83.12 µm, 64.37 µm, and 52.45 µm) for single-mode fibers using Hydrofluoric
... Show MoreThe simulation study has been conducted for the harmonics of Nd: YAG laser, namely the second harmonic generation SHG, the third harmonic generation THG, and the fourth harmonic generation FHG. Determination of beam expander's expansion ratio for specific wavelength and given detection range is the key in beam expander design for determining minimum laser spot size at the target. Knowing optimum expansion ratio decreases receiving unit dimensions and increases its performance efficiency. Simulation of the above mentioned parameters is conducted for the two types of refractive beam expander, Keplerian and Galilean. Ideal refractive indices for the lenses are chosen adequately for Nd: YAG laser harmonics wavelengths, so that increasing transm
... Show More