In this work, an experimental research on a low voltage DC magnetron plasma sputtering (0-650) volt is used for coating gold on a glass substrate at a constant pressure of argon gas 0.2 mbar and deposition time of 30 seconds. We focused on the effects of operating conditions for the system such as, electrode separation and sputtering current on coated samples under the influence of magnetic flux. Electron temperature and electrons and ions densities are determined by a cylindrical single Langmuir probe. The results show the sensitivity of electrode separation lead to change the plasma parameters. Furthermore, the surface morphology of gold coated samples at different electrode separation and sputtering current were studied by atomic force microscopy (AFM). The AFM analysis showed that the variation of average grain diameter and average grain height is nonlinear with a minimum value of average grain diameter 90 nm at electrode separation of 4 cm and 30 mA sputtering current.
In the present work, a d.c. magnetron sputtering system was designed and fabricated. The chamber of this system was includes from two copper coaxial cylinders where the inner one used as a cathode (target) while the outer one used as the anode with Solenoid magnetic coil located on the outer cylinder (anode). The axial profile of magnetic field for various coil current (from 2A to 14 A) are shown. The plasma characteristics in the normal glow discharge region are diagnostics by the 2.2mm diameter Langmuir probe with different length along the cathode and located at different radial positions 1cm and 2cm from the cathode surface. The result of this work shows that, the electron energy distributions at different radial positions along the
... Show MoreIn this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreA d.c. magnetron sputtering system was designed and fabricated. The chamber of this system is consisted from two copper coaxial cylinders. The inner one used as the cathode and the outer one used as anode with magnetic coil located on the outer cylinder (anode). The axial behavior of the magnetic field strength along the cathode surface for various coil current (from 2A to 14A) are shown. The results of this work are investigated by three cylindrical Langmuir probes that have different diameters that are 2.2mm, 1mm, and 0.45mm. The results of these probes show that, there are two Maxwellian electron groups appear in the central region. As well as, the density of electron and ion decreases with increases of magnetic field strengths.
Abstract- Plasma parameters in a planar dc-sputtering discharge in argon were measured by cylindrical electrostatic probe (Langmuir probe).Electron density, electron temperature, floating potential, and space potential were monitored as a function of working discharge pressure. Electrostatic probe and supporting circuit were described and used to plot the current – voltage characteristics. Plasma properties were inferred from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values are in the range of (10-16 -10-17) m-3 and (2.93 – 5.3) eV for the electron density and the electron temperature respectively.
In this work, the electrical properties and optimum conditions of the plasma sputtering system have been studied. The electrical properties such as Paschen's curve, current-voltage, current pressure relations, the strength of magnetic field as a function of inter-electrode distance, the influence of gas working pressure and argon-oxygen ratio on the electrical characterization were studied to determine the basic optimum condition of the system operation. the discharge current as a function of discharge voltage showed high discharge current at 2.5 cm. These parameters represent the basic conditions to operate any plasma sputtering system which are the right behavior to build up and design the discharge an el
... Show MoreIn this work, the effect of annealing temperature on the electrical properties are studied of p-Se/ n-Si solar cell, which p-Se are deposit by DC planar magnetron sputtering technique on crystal silicon. The chamber was pumped down to 2×10−5 mbar before admitting the gas in. The gas was Ar. The sputtering pressure varied within the range of 4x10-1 - 8x10-2mbar by adjusting the pumping speed through the opening control of throttle valve. The electrical properties are included the C-V and I-V measurements. From C-V measurements, the Vbi are calculated while from I-V measurements, the efficiency of solar cell is calculated.
This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap val
... Show MoreIn this work, p-n junctions were fabricated from highly-pure nanostructured NiO and TiO2 thin films deposited on glass substrates by dc reactive magnetron sputtering technique. The structural characterization showed that the prepared multilayer NiO/TiO2 thin film structures were highly pure as no traces for other compounds than NiO and TiO2 were observed. It was found that the absorption of NiO-on-TiO2 structure is higher than that of the TiO2-on-NiO. Also, the NiO/TiO2 heterojunctions exhibit typical electrical characteristics, higher ideality factor and better spectral responsivity when compared to those fabricated from the same materials by the same technique and with larger particle size and lower structural purity.
Cadmium Selenide (CdSe) thin films have been deposited on a glass substrate utilizing the plasma DC-sputtering method at room temperature at different deposition time in order to achieve different films thickness, and studied its sensitivity to the carbon monoxide CO gas which are show high response as the film thickness increases, the DC-conductivity and photoconductivity are also studied and which are increased too as the film thickness increases, that indicates the good semiconducting behavior at room temperature and light environments.