This study investigates the ionic conduction dependence on the size of alkaline cations in gel polymer electrolytes based on double iodide can enhance by incorporating a salt having a bulky cation. Group of gel polymer electrolytes with polyethylene oxide (PEO) as a host matrix based on double salts potassium iodide (KI) and rubidium iodide (RbI) with different weight ratio prepared by using solution cast technique. The maximum value of conductivity reaches (6.03 10⁻3 at 293 K) S/cm for an electrolyte which content (KI 45%, RbI 5%) from binary salt. The ionic conductivity of for gel polymer electrolytes gradually increases by increasing temperature. The real dielectric constant results confirm that the dielectric behavior of the PEO material is a thermally activated process. FTIR results confirm that the shifting of peaks is another way to prove the interactions between PEO and binary salt ascribed to the formation of a transient cross-linking complex between the cations of the ionic liquids and the ether oxygen of the PEO.
Background: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirements. Midline fracture; poor thermal conductivity and water sorption, are common problem in this material. The purpose of this study was to evaluate the effect of addition of surface treated Aluminum oxide nano fillers on some properties of heat cured (PMMA). Materials and methods: In addition to controlled group of heat cured PMMA the silanized (Al2O3) nanoparticles was added to PMMA powder by weight in three different percentages 1wt%, 2wt% and 3wt%, mixed by probe ultra-sonication machine. 200 specimens were constructed and divided into 5 groups according to the test (e
... Show MoreIn recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have concentrated on improving the properties of concrete and studying the factors that influence on these properties. Since the compressive strength is considered a valuable property and is invariably a vital element of the structural design, especially high early strength development which can be provide more benefits in concrete production, such as reducing construction time and labor and saving the formwork and energy. As a matter of fact, it is influenced as a most properties of concrete by several factors including water-cement ratio, cement type and curing methods employed.
Because of acce
Background: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirement. The purpose of this study was to evaluate the effect of addition of 3% wt of treated (silanized) Titanium oxide Nano filler on some physical and mechanical properties of heat cured acrylic denture base material. Materials and methods: 100 specimens were constructed, 50 specimens were prepared from heat cure PMMA without additives (control) and 50 specimens were prepared from heat cure PMMA with the addition of TiO2 Nano fillers. Each group was divided into 5 sub groups according to the test performed which was mixed by probe ultra-sonication machine. Results: A highly
... Show More
Background: Polymethylmethacrylate (PMMA) is the most ‎commonly used mâ€aterial in denture construction. This material is ‎far from ideal in fulfilling the‎ mechanical requirements, like low impact and transverse strength and poor thermal conductivity are present in this material. The purpose of this study was to study the effect of addition a composite which include 1%wt silanized silicone dioxide nano fillers (SiO2) and 1wt% oxygen plasma treated polypropylene fiber (PP) on some properties of heat cured acrylic resin denture base material (PMMA). Materials and methods: One hundâ€red (100) prepared specimens were divided into five groups according to the tests, each group consisted of 20 specimens and t
Abstract
The catalytic cracking conversion of Iraqi vacuum gas oil was studied on large and medium pore size (HY, HX, ZSM-22 and ZSM-11) of zeolite catalysts. These catalysts were prepared locally and used in the present work. The catalytic conversion performed on a continuous fixed-bed laboratory reaction unit. Experiments were performed in the temperature range of 673 to 823K, pressure range of 3 to 15bar, and LHSV range of 0.5-3h-1. The results show that the catalytic conversion of vacuum gas oil increases with increase in reaction temperature and decreases with increase in LHSV. The catalytic activity for the proposed catalysts arranged in the following order:
HY>H
... Show MoreIn this work, the effects of size, and temperature on the linear and nonlinear optical properties in InGaN/GaN inverse parabolic and triangular quantum wells (IPQW and ITQW) for different concentrations at the well center were theoretically investigated. The indium concentrations at the barriers were fixed to be always xmax = 0.2. The energy levels and their associated wave functions are computed within the effective mass approximation. The expressions of optical properties are obtained analytically by using the compact density-matrix approach. The linear, nonlinear, and total absorption coefficients depending on the In concentrations at the well center are investigated as a function of the incident photon energy for different
... Show MoreThis current study was built on creating four electrodes based on molecularly imprinted polymers (MIPs). As the template using Cefalexin (CFX), 1-vinyl imidazole (VIZ) and vinyl acetate (VA) as monomer, and N, N-methylene bis acrylamide (MBAA) as cross-linkers and benzoyl peroxide as the initiator, two MIPs were prepared. The same composition was used in non-impressed polymers (NIPs) preparation, but without the template (Cefalexin). For the membranes preparation, numerous plasticizers, such as tri-oly phosphate (TOP) and di-octyl phthalate (DOP), were used in the PVC matrix, slop, detection limit, lifetime, and linearity range of CFX-MIPs electrodes are characteristics &nb
... Show More