Quantitative analysis of human voice has been subject of interest and the subject gained momentum when human voice was identified as a modality for human authentication and identification. The main organ responsible for production of sound is larynx and the structure of larynx along with its physical properties and modes of vibration determine the nature and quality of sound produced. There has been lot of work from the point of view of fundamental frequency of sound and its characteristics. With the introduction of additional applications of human voice interest grew in other characteristics of sound and possibility of extracting useful features from human voice. We conducted a study using Fast Fourier Transform (FFT) technique to analyze human voice to identify different frequencies present in the voice with their relative proportion while pronouncing selected words like numbers. Details of findings are presented
Students’ feedback is crucial for educational institutions to assess the performance of their teachers, most opinions are expressed in their native language, especially for people in south Asian regions. In Pakistan, people use Roman Urdu to express their reviews, and this applied in the education domain where students used Roman Urdu to express their feedback. It is very time-consuming and labor-intensive process to handle qualitative opinions manually. Additionally, it can be difficult to determine sentence semantics in a text that is written in a colloquial style like Roman Urdu. This study proposes an enhanced word embedding technique and investigates the neural word Embedding (Word2Vec and Glove) to determine which perfo
... Show MoreAlthough the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreFree Radical Copolymerization of Styrene/ Methyl Methacrylate were prepared chemically under Nitrogen ,which was investigated, in the present of Benzoyl Peroxide as Initiator at concentration of 2 × 10-3 molar at 70 °C, which was carried out in Benzene as solvent to a certain low conversion . FT-IR spectra were used for determining of the monomer reactivity ratios ,which was obtained by employing the conventional linearization method of Fineman-Ross (F-R) and Kelen-Tüdos (K- T). The experimental results showed the average value for the Styrene r1 / Methyl Methacrylate r2 system, Sty r1 = 0.45 , MMA r2 = 0.38 in the (F–R) Method and r1 = 0.49 , r2 = 0.35 in the (K–T) Method, The Results of this indicated show the random distri
... Show Moreم.د. فاطمة حميد ،أ.م.د وفاء صباح محمد الخفاجي, International Journal of Psychosocial Rehabilitation,, 2020 - Cited by 1