Zinc Oxide (ZnO) is considered as one of the best materials already used as a window layer in solar cells due to its antireflective capability. The ZnO/MgF2 bilayer thin film is more efficient as antireflective coating. In this work, ZnO and ZnO/MgF2 thin films were deposited on glass substrate using pulsed laser deposition and thermal evaporation deposition methods. The optical measurements indicated that ZnO thin layer has an energy gap of (3.02 eV) while ZnO/MgF2 bilayer gives rise to an increase in the energy gap. ZnO/MgF2 bilayer shows a high energy gap (3.77 eV) with low reflectance (1.1-10 %) and refractive index (1.9) leading to high transmittance, this bilayer could be a good candidate optical material to improve the performance of solar cell window.
This contribution investigates the impact of adding transition metal of Ti to CeOy samples at various concentrations referring to 0, 15.84, 24.46, 34.46, 36.23, 38.46, 45.38% and pure TiOy, correspondingly. The samples were fabricated by the magnetron sputtering technique. X-ray diffraction (XRD) configurations demonstrate the presence of α-Ce2O3 and Ce2O3 phases with increased Ti contents in the systems. X-ray photoelectron spectroscopy (XPS) experimentation confirms the purity of the S1-sample (CeO2) and the purity of the S8-sample (TiO2). Further XPS analysis reveals that Ti incorporation in the doped systems functions as a reducing agent because of the existence of α-Ce2O3 and Ce2O3 phases. Moreover, based on UV–vis spectroscopy res
... Show MoreThis work was conducted to study the ability of locally prepared Zeolite NaY for the reduction of sulfur compounds from Iraqi natural gas by a continuous mode adsorption unit. Zeolite Y was hydrothermally synthesized using abundant kaolin clay as aluminum precursor. Characterization was made using chemical analysis, XRD and BET surface area. Results of the adsorption experiments showed that zeolite Y is an active adsorbent for removal H2S from natural gas and other gas streams. The effect of temperature was found inversely related to the removal efficiency. Increasing bed height was found to increase the removal efficiency at constant flow rate of natural gas. The adsorption capacity was evaluated and its maximum uptake was 5.345 mg H2S/g z
... Show MoreThe faujasite type Y zeolite catalyst was prepared from locally available kaolin. For prepared faujasite type NaY zeolite X-ray, FT-IR, BET pore volume and surface area, and silica/ alumina were determined. The Xray and FT-IR show the compatibility of prepared catalyst with the general structure of standard zeolite Y. BET test shows that the surface area and pore volume of prepared catalyst were 360 m2 /g and 0.39 cm3 /g respectively.
The prepared faujasite type NaY zeolite modified by exchanging sodium ion with ammonium ion using ammonium nitrate and then ammonium ion converted to hydrogen ion. The maximum sodium ion exchange with ammonium ion was 53.6%. The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites
This work was conducted to study the ability of locally prepared Zeolite NaY for the reduction of sulfur compounds from Iraqi natural gas by a continuous mode adsorption unit. Zeolite Y was hydrothermally synthesized using abundant kaolin clay as aluminum precursor. Characterization was made using chemical analysis, XRD and BET surface area. Results of the adsorption experiments showed that zeolite Y is an active adsorbent for removal H2S from natural gas and other gas streams. The effect of temperature was found inversely related to the removal efficiency. Increasing bed height was found to increase the removal efficiency at constant flow rate of natural gas. The adsorption capacity was evaluated and its maximum uptake was 5.345 mg H2S/g z
... Show MoreIn this research, a sensor for chemical solutions was designed and formed using optical fiber-based on a surface Plasmon resonance technology. A single-mode optical fiber with three different diameters (25, 45 and 65) µm was used, respectively. The second layer of the low refractive fiber was replaced by gold, which was electrically deposited at 40 µm thickness. For each of the three types of optical fiber, different saline concentrations (different index of refraction) were used to evaluate the performance of the refractive index sensor (chemical sensor) by measuring its sensitivity and resolutions. The highest values we could get for these two parameters were 240mm/RIU, and 6*10-5 RIU respectively, when the diameter of a
... Show MoreThe effect of the concentration of the colloidal nanomaterial on their optical limiting behavior is reported in this paper. The colloids of sliver nanoparticles in deionized water were chemically prepared for the two concentrations (31 ppm and 11ppm). Two cw lasers (473 nm Blue DPSS laser and 532 nm Nd:YAG laser) are used to compare the optical limiting performance for the samples. UV–visible spectrophotometer, transmission electron microscope (TEM) and Fourier Transformation Infrared Spectrometer (FTIR) were used to obtain the characteristics of the sample. The nonlinear refractive index was calculated to be in the order of 10-9 cm2/W. The results demonstrate that the observed limiting response is significant for 532nm. In addition, t
... Show MoreThe present work focuses on the changing of the structural characteristics of the grown materials through different material characterization methods. Semiconductor CdSxSe 1-x nano crystallines have been synthesized by chemical vapor depostion. (X- ray Diffraction; XRD), (Field Emission Scanning Electron Microscopy; FESEM), measured the characterization of Semiconductor CdSxSe1-x nano crystallines. The optical properties of semiconductor CdSxSe1-x nanocrystallines have been studied by the photoluminescence (PL) (He-Cd pulsed ultraviolet laser at 325nm excitation wavelength) at room temperature. The results showed the change rule of photoluminsence peak at different S
... Show MoreIn this work, strains and dynamic crack growth were studied and analyzed in thin flat plate with a surface crack at the center, subjected to cycling low velocity impact loading for two types of aluminum plates (2024, 6061). Experimental and numerical methods were implemented to achieve this research. Numerical analysis using program (ANSYS11-APDL) based on finite element method used to analysis the strains with respect to time at crack tip and then find the velocity of the crack growth under cycling impact loading. In the experimental work, a rig was designed and manufactured to applying the cycling impact loading on the cracked specimens. The grid points was screened in front of the crack tip to measure the elastic-plas
... Show More