In this research, the use of natural materials like wool and cannabis as intermediate reinforcement for prosthetic limbs due to their comfort, affordability, and local availability was discussed. As part of this study on below-the-knee (BK) prosthetic sockets, two sets of samples were made using a vacuum method. These sets were made of natural fiber-reinforced polymer composites with lamination 80:20: group (Y) had 4 perlon, 1 wool 4 perlon, and group (G) had 4 perlon, 1 cannabis 4 perlon. The two groups were compared with a socket made of polypropylene. Tensile testing was used to determine the mechanical characteristics of the socket materials. The Y group has a yield stress of 17 MPs, an ultimate strength of 18.75 MPa, and an elastic modulus of 4.021 GPa, while for the G group, these values are 12.75 MPa, 18.84 MPa, and 4.076 GPa, respectively. The fatigue test was used to evaluate the failure characteristics of the socket. An F-socket was utilized to test the interface compression between both the limb and the socket. For the Tekscan sensor, the calculated pressure in the medial region is 350 K Pa, while it is 330 KPa in the posterior region. Solid Works software was used to draw a prosthetic socket for the numerical study. The failure safety agent for the composite material for group Y was 1.26. The finite element method (ANSYS Workbench 14.5) was used to look at the fatigue characteristics to detect the maximum stress, safety factor, and total deformation.
This research introduces a developed analytical method to determine the nominal and maximum tensile stress and investigate the stress concentration factor. The required tooth fillets parametric equations and gears dimensions have been reformulated to take into account the asymmetric fillets radiuses, asymmetric pressure angle, and profile shifting non-standard modifications. An analytical technique has been developed for the determination of tooth weakest section location for standard, asymmetric fillet radiuses, asymmetric pressure angle and profile shifted involute helical and spur gears. Moreover, an analytical equation to evaluate gear tooth-loading angle at any radial distance on the involute profile of spur and hel
... Show MoreThis work characterizes the fractographic features of the neat epoxy and ZrO2 epoxy nanocomposites. All samples were subjected to a tensile test to determine the tensile strength and tensile modulus. SEM images were used to study the morphology of the fractured surface. The fractographic of the fracture surfaces were studied by microstructure analysis program (j-images) to specify the effect of ZrO2 nanoparticles on tensile performance and failure mechanism for ZrO2 epoxy nanocomposites. The tensile test results show that the addition of ZrO2 nanoparticles (2, 4, 6, 8, and 10 vol.%) to the epoxy matrix leads to increase the tensile strength about 40% for optimal content of ZrO2 nanop
... Show MoreElectrochemical corrosion of hydroxyapatite (HAP) coated performance depends on various parameters like applied potential, time, thickness and sintering temperature. Thus, the optimum parameters required for the development of stable HAP coatings was found by using electrophoretic deposition (EPD) technique. This study discusses the results obtained from open circuit potential-time measurements (OCP-time), potentiodynamic polarisation and immersion tests for all alloy samples done under varying experimental conditions, so that the optimum coating parameters can be established. The ageing studies of the coated samples were carried out by immersing them in Ringer’s solution for a period of 30 days indicates the importance of stable HAP c
... Show MorePowder Silica (SiO2) was added to epoxy polymer with different weight percentages (3.75,7.5,11.25 and 15 wt%) for particle size  63 µm. Hand lay-up method it is used to prepared (Epoxy-Silica) composite, and cutting appropriate specimens for testing. Electrical strength varies nonlinearly with specimens thickness, also decreasing with average time for the rise of voltage decreases due to electro thermal effects. Clearly, electrical strength decreases with the increase of the proportion of added silica. The hardness, tensile strength and young modulus increased with the added silica increases due to changing in material characteristics from ductility to brittle. Microscopic cracks and irregularity deformation were a
... Show MoreThe research discussed the topic of the functional role of responsive materials in being elements of a functional transformation in the design of industrial products, based on the study of the structures of smart materials and their performance capabilities at the level of action and self-reaction that characterize this type of materials.
Basic features of responsive materials have been identified to be elements of self-functional insertion into the industrial product design, which contributes to raising the efficiency and functional capacity of the industrial product and enhancing the ability of products to perform self-acting interactions in the structural structure of the material structure of the product and its ability to res
... Show MoreModern asphalt technology has adopted nanomaterials as an alternative option to assert that asphalt pavement can survive harsh climates and repeated heavy axle loading during service life and prolong pavement life. This work aims to elucidate the behavior of the modified asphalt mixture fracture model and assess the fatigue and Rutting performance of Hot Mix Asphalt (HMA) mixes using the outcomes of indirect Tensile Strength (IDT), Semicircular bend (SCB) and rutting resistance; for this, a single PG (64−16) nanomodified asphalt binder with 5 % SiO2 and TiO2 have been investigated through a series of laboratory tests, including: Resilient modulus, Creep compliance, and tensile strength, SCB, and Flow Number (FN) to study their potential
... Show MoreThis paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat
... Show MoreThe effect of subinhibitory concentration of Antibiotics on the Adherence of S.aureus (Coagulase Positive Staphylococci), and S.epidermidis (Coagulase negative Staphylococci) and Pseudomonas aeruginosa, Enterobacter cloacae, Citobacter freundi (Gram negative bacteria) was done and the results revealed that Rifampicin was the best antibiotic inhibiting Staphylococci adherence and Vancomycin has less effect on the adherence of Staphylococci, whereas Tetracyclin was the best antibiotic inhbiting Gram negative bacteria adherence and Amikacin has the lest less effect on inhibiting bacterial adherence.