A progression of Polyaniline (PANI) and Titanium dioxide (TiO2) nanoparticles (NPs) were prepared by an in-situ polymerization strategy within the sight of TiO2 NPs. The subsequent nanocomposites were analyzed using Fourier-transform infrared spectra (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX) taken for the prepared samples. PANI/TiO2 nanocomposites were prepared by various compound materials (with H2SO4 0.3 M and without it, to compare the outcome of it) by the compound oxidation technique using ammonium persulfate (APS) as oxidant within the sight of ultrafine grade powder of TiO2 cooled in an ice bath. Nanocomposites were prepared by the addition of TiO2 with two weight ratios (0.3 and 0.5 wt. %) during the polymerization of PANI. The outcomes showed good collaboration between PANI and TiO2. FTIR spectral shows a shift to higher wave numbers in the peaks of PANI/TiO2 nanocomposites, due to the Coulomb force that resulted from the interaction between the TiO2 nanoparticles with PANI. SEM results show that the TiO2 nanoparticles enwrap the polyaniline and agglomeration of uneven distribution of TiO2 particles can be seen in the PANI matrix. The intensity of the peak in the EDX analyses was found to appear by adding the nanoparticles. XRD pattern of PANI polymerization and PANITNCs shows that the TiO2 NPs and PANI affected the crystallization performance of nanocomposites, it was identified that the TiO2 NPs form a relatively irregular distribution in the PANI chain.
Tin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K
The Silver1Indium1Selenide (AgInSe2) (AIS) thin1films of (3001±20) nm thickness have been1prepared2from the compound alloys2using thermal evaporation2 technique onto the glass2substrate at room temperature, with a deposition rate2(3±0.1) nm2sec-1.
The2structural, optical and electrical3properties have been studied3at different annealing3temperatures (Ta=450, 550 and 650) K.
The amount3or (concentration) of the elements3(Ag, In, Se) in the prepared alloy3was verified using an
... Show MoreIn this paper a thin films of selenium was prepare on substrates of n-Si by evaporation in a vacuum technique with thickness about 0.5μm. And then an annealing process was done on samples at two temperature (100 and 200) C ° in a vacuum furnace (10-3 torr).
Some structural, optical and mechanical properties of prepared thin films were measured. Results showed that the prepared film was the crystallization, optical transmittance and micro hardness of the prepared thin films increased significantly after annealing.
The nonlinear optical properties for polymeric (PMMA) doping with dye Rhodmine (R3Go) has been studied .The samples are prepared by normal polymerization method with concentrations of 5x10-5mol/l and a thickness of 272.5µm.
Plasma effect was studied on samples prepared before and after exposure to the Nd: YAG laser for three times 5, 10 and 15 minutes. Z-Scan technique is used to determine the nonlinear optical properties such as; refractive index (n2) and the coefficient of nonlinear absorption (β). It was found that the nonlinear properties is change by increasi
... Show MoreThe master sintering concept is introduced as a unifying sintering model for the initial, intermediate and final stage of sintering. The master sintering curve is independent on the time-temperature trajectory due to account for its integral. The master sintering curve is constructed on a material parameter, which is the activation energy for sintering and other curve shaping parameters, which depends on the initial state of the powder. Literature data of sintering of TiO2 compacts with two initial packing densities of 55% and 69% of theoretical is utilized for the construction of the master sintering curves. The higher initial packing density compact shows higher densification rate, which is reflected by different set of shaping paramet
... Show MoreThe current research aims at extracting the standard characteristics of the emotional balance of the university students according to the response theory. This was accomplished by following accredited scientific steps, to achieve this goal, the researcher followed scientific steps in the procedures of the analysis of the scale. She translated the scale from English to Arabic and then made a reverse translation. it was presented to a committee of experts in English to ensure and verify the validity of the paragraphs logically and prove the face validity of the scale, which consists of (30) paragraphs, it was presented to (6) experts who are specialists in the educational and psychological sciences and in the light of their observations ha
... Show MoreOptical properties of Rhodamine-B thin film prepared by PLD
technique have been investigated. The absorption spectra using
1064nm and 532 nm laser wavelength of different laser pulse
energies shows that all the curves contain two bands, B band and Q
bands with two branches, Q1 and Q2 band and a small shift in the
peaks location toward the long wavelength with increasing laser
energy. FTIR patterns for Rhodamine-B powder and thin film within
shows that the identified peaks were located in the standard values
that done in the previous researches. X-ray diffraction patterns of
powder and prepared Rhodamine-B thin film was display that the
powder has polycrystalline of tetragonal structure, while the thin film
This work aimed PVA nanofibers in a range of concentrations were successfully manufactured via electrospinning. PVA NFs/Si was effectively prepared using the electrospinning process. The structural, morphological, optical and electrical properties of the prepared PVA were studied using XRD, FE-SEM, UV-Vis spectrophotometer and I-V characteristics, respectively. The amorphous structure of PVA nanofibers was observed. The optical energy gap from ultraviolet to visible was between (2.75 and 2.41) eV, making this compound highly sensitive to visible orange light at 610 nm, with a photosensitivity of 66%. The optical energy gap of PVA/Si heterojunction was utilized to modify this film from the UV to the visible spectrum. As show in the results,
... Show More