Preferred Language
Articles
/
ijl-28
Sulfur Hexafluoride (SF6) Trace Gas Sensing using Modulated CO2 Laser Beam
...Show More Authors

Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity of the sensor has a significant dependence on the thickness of the coating and the sensor with the highest sensitivity showed a linear response for RH change in the range of 27-95% RH and a fast response time of 0.8 sec for an RH change from 50% to 90%.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 27 2020
Journal Name
Iraqi National Journal Of Nursing Specialties
Effectiveness of an Instructional Program Concerning Healthy Lifestyle on Patients’ Attitudes after Percutaneous Coronary Intervention at Cardiac Centers in Baghdad City
...Show More Authors

Abstract:

Objective: The study’s aim to evaluate the effectiveness of instructional program about healthy lifestyle on patients’ attitudes after undergoing percutaneous coronary intervention.

Methodology: Quasi-experimental design/ has been utilized for the current study starting from December 2018 to March 2020 to achieve the objectives of the study. Non-probability (purposive) sample of 60 patients was divided into intervention and control groups. Data were analyzed by the application of descriptive and inferential statistical methods.

Results: findings reported that before intervention both study and control groups demonstrated low total mean of score relat

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Optical Fiber Technology
Highly sensitive fiber Bragg grating based gas sensor integrating polyaniline nanofiber for remote monitoring
...Show More Authors

View Publication
Scopus (8)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Iraqi Journal Of Physics
Gas Sensor for Hazardous Nitrogen Dioxide Based on TiO2 Nanotube Synthesis via Electrochemical Method
...Show More Authors

Because of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectro

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Characteristics of Zinc Oxide Film Prepared by Chemical Spray Deposition as a Gas Sensor
...Show More Authors

Zinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide

View Publication Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Preparation of Light Fuel Fractions from Heavy Vacuum Gas Oil by Thermal Cracking Reaction
...Show More Authors

This work deals with thermal cracking of heavy vacuum gas oil which produced from the top of vacuum distillation unit at Al- DURA refinery, by continuous process. An experimental laboratory plant scale was constructed in laboratories of chemical engineering department, Al-Nahrain University and Baghdad University. The thermal cracking process was carried out at temperature ranges between 460-560oC and atmospheric pressure with liquid hourly space velocity (LHSV) equal to 15hr-1.The liquid product from thermal cracking unit was distilled by atmospheric distillation device according to ASTM D-86 in order to achieve two fractions, below 220oC as a gasoline fraction and above 220oC as light cycle o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Conference Of Numerical Analysis And Applied Mathematics Icnaam 2019
Functionalized multi-walled carbon nanotubes network sensor for NO2 gas detection at room temperature
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Some Properties of Polymer Modified Self-Compacting Concrete Exposed to Kerosene and Gas Oil
...Show More Authors

This thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil) on mechanical properties of polymer modified self-compacting concrete (PMSCC) after different exposure periods of (30 ,60 ,90 ,and 180 days).

Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC.

The test results show that the PMSCC (15% P/C ratio) which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio) was

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 14 2015
Journal Name
Spe North Africa Technical Conference And Exhibition
Feasibility of Gas Lift to Increase Oil Production in an Iraqi Giant Oil Field
...Show More Authors
Abstract<p>Gas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in</p> ... Show More
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Sun Jan 03 2021
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Correlation of Minimum Miscibility Pressure for Hydrocarbon Gas Injection In Southern Iraqi Oil Fields
...Show More Authors

One of the most important enhanced oil recoveries methods is miscible displacement. During this method preferably access to the conditions of miscibility to improve the extraction process and the most important factor in these conditions is miscibility pressure. This study focused on establishing a suitable correlation to calculate the minimum miscibility pressure (MMP) required for injecting hydrocarbon gases into southern Iraq oil reservoir.  MMPs were estimated for thirty oil samples from southern Iraqi oil fields by using modified Peng and Robinson equation of state. The obtained PVT reports properties were used for tunning the equation of state parameters by making a match between the equation of state results with experimenta

... Show More
View Publication
Crossref
Publication Date
Mon Feb 28 2022
Journal Name
Structural Chemistry
Sensitivity of SnO2 nanoparticles/reduced graphene oxide hybrid to NO2 gas: A DFT study
...Show More Authors
Abstract<p>The sensitivity of SnO<sub>2</sub> nanoparticles/reduced graphene oxide hybrid to NO<sub>2</sub> gas is discussed in the present work using density functional theory (DFT). The SnO<sub>2</sub> nanoparticles shapes are taken as pyramids, as proved by experiments. The reduced graphene oxide (rGO) edges have oxygen or oxygen-containing functional groups. However, the upper and lower surfaces of rGO are clean, as expected from the oxide reduction procedure. Results show that SnO<sub>2</sub> particles are connected at the edges of rGO, making a p-n heterojunction with a reduced agglomeration of SnO2 particles and high gas sensitivity. The DFT results are in</p> ... Show More
View Publication
Crossref