Fractional Er: YAG laser resurfacing is increasingly used for treating rhytides and photo aged skin because of its favorable benefit‐risk ratio. The multi-stacking and variable pulse width technology opened a wide horizon of rejuvenation treatments using this type of laser. To evaluate the efficacy and safety of the use of fractional 2940 nm Er: YAG laser in facial skin rejuvenation. Twelve female patients with mean age 48.3 years and multiple degrees of aging signs and solar skin damages, were treated with 2 sessions, one month apart by fractional Er: YAG laser. Each session consisted of 2 steps, the first step employed the use of the multi stack ablative fractional mode and the fractional long pulsed non-ablative mode settings were used in the second step. The results were assessed 4-8weeks after the last session by using the wrinkles assessment scale improvement, the improvement in the degree of dyschromia and keratosis, the degree of patients' satisfaction and rate of complications. The mean improvement in Wrinkles assessment scale was very satisfying. The improvement in keratosis was good to excellent in 66.7% of patients compared to 33.3% of patients who were mildly to moderately improved. Dyschromia improvement, 50% of the patients had good to excellent results versus 50% who had mild to moderate improvement. 75% of patients were well satisfied, 16.6% were moderately satisfied and 8.3% were unsatisfied. Total incidence of complications was 16.6%, where 1 patient had herpes infection and a second patient had milia. The use of Er: YAG laser in fractional ablative and fractional long pulse non ablative modes for facial rejuvenation is an effective, safe, with short down time and low complication rate.
This paper introduces a relation between resultant and the Jacobian determinant
by generalizing Sakkalis theorem from two polynomials in two variables to the case of (n) polynomials in (n) variables. This leads us to study the results of the type: , and use this relation to attack the Jacobian problem. The last section shows our contribution to proving the conjecture.
This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
Median filter is adopted to match the noise statistics of the degradation seeking good quality smoothing images. Two methods are suggested in this paper(Pentagonal-Hexagonal mask and Scan Window Mask), the study involved modified median filter for improving noise suppression, the modification is considered toward more reliable results. Modification median filter (Pentagonal-Hexagonal mask) was found gave better results (qualitatively and quantitatively ) than classical median filters and another suggested method (Scan Window Mask), but this will be on the account of the time required. But sometimes when the noise is line type the cross 3x3 filter preferred to another one Pentagonal-Hexagonal with few variation. Scan Window Mask gave bett
... Show MoreData hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show MoreIn this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.