Bioethanol is an attractive fuel with higher potential for energy security and environmental safety. Olive solid residues were used as a raw material for the production of bioethanol through the use of different preliminary treatments . Separate treatments with cellulose, hydrochloric acid (HCl 5%), sulfuric acid (H2SO4 2%), and liquid ammonia NH4OH (20%) were used to convert cellulose and hemicellulose into monosaccharaides. The production of ethanol was observed during the fermentation process using R. minuta under anaerobic conditions. After 3 days of fermentation, lowest concentrations of ethanol of 0.233, 0.249, 0.261, and 0.275 g/ l were produced from ol
... Show MoreIn this research, production of ethanol from waste potatoes fermentation was studied using Saccharmyses cerevisiae. Potato Flour was prepared from potato tubers after cooking and drying at 85°C. Homogenous slurry of potato flour was prepared in water at solid liquid ratio 1:10. Liquefaction of potato flour slurry with α-amylase at 80°C for 40 min followed by saccharification with glucoamylase at 65°C for 2 hr .Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in production of 33 g/l ethanol.
The parameters studied were; temperature, time of fermentation and pH. It was found that Saccharification process is affected by enzyme Amylo 300 conc
... Show MoreBioethanol production from sugar fermentation is one of the most sustainable alternatives to substitute fossil fuel. production of bioethanol from low grade dates which are rich of sugars. An available sugar from a second grade dates (reduction sugar) was 90g/l in this study. Sugar can be served as essential carbon sources for yeast growth in aerobic condition and can also be converted to bioethanol in anaerobic condition. The effect of various parameters on bioethanol production, fermentation time, pH-values, inoculum size and initial sugar concentration were varied in order to determine the optimal of bioethanol production. The highest bioethanol yield was 33g/l which was obtained with sugar concentration 90 g/l, inocu
... Show MoreBioethanol produced from lignocellulose feedstock is a renewable substitute to declining fossil fuels. Pretreatment using ultrasound assisted alkaline was investigated to enhance the enzyme digestibility of waste paper. The pretreatment was conducted over a wide range of conditions including waste paper concentrations of 1-5%, reaction time of 10-30 min and temperatures of 30-70°C. The optimum conditions were 4 % substrate loading with 25 min treatment time at 60°C where maximum reducing sugar obtained was 1.89 g/L. Hydrolysis process was conducted with a crude cellulolytic enzymes produced by Cellulomonas uda (PTCC 1259).The maximum amount of sugar released and hydrolysis efficiency were 20.92 g/L and 78.4 %, respectively. Sugars
... Show More