Bioethanol produced from lignocellulose feedstock is a renewable substitute to declining fossil fuels. Pretreatment using ultrasound assisted alkaline was investigated to enhance the enzyme digestibility of waste paper. The pretreatment was conducted over a wide range of conditions including waste paper concentrations of 1-5%, reaction time of 10-30 min and temperatures of 30-70°C. The optimum conditions were 4 % substrate loading with 25 min treatment time at 60°C where maximum reducing sugar obtained was 1.89 g/L. Hydrolysis process was conducted with a crude cellulolytic enzymes produced by Cellulomonas uda (PTCC 1259).The maximum amount of sugar released and hydrolysis efficiency were 20.92 g/L and 78.4 %, respectively. Sugars released from waste paper were fermented into bioethanol with Saccharomyces cerevisiae. The maximum concentration of bioethanol estimated was 9.5 g/L after 48h of cultivation, the yield and volumetric productivity were 0.454 g/g glucose and 0.2g bioethanol/ L h. respectively. This study of ultrasound and sodium hydroxide treatment may be (we think) it will be a promising technique to develop bioethanol production from waste paper.
In this research, production of ethanol from waste potatoes fermentation was studied using Saccharmyses cerevisiae. Potato Flour was prepared from potato tubers after cooking and drying at 85°C. Homogenous slurry of potato flour was prepared in water at solid liquid ratio 1:10. Liquefaction of potato flour slurry with α-amylase at 80°C for 40 min followed by saccharification with glucoamylase at 65°C for 2 hr .Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in production of 33 g/l ethanol.
The parameters studied were; temperature, time of fermentation and pH. It was found that Saccharification process is affected by enzyme Amylo 300 conc
... Show MoreThis research presents a new study in reactive distillation by adopting a consecutive reaction . The adopted consecutive reaction was the saponification reaction of diethyl adipate with NaOH solution. The saponification reaction occurs in two steps. The distillation process had the role of withdrawing the intermediate product i.e. monoethyl adipate from the reacting mixture before the second conversion to disodium adipate occurred. It was found that monoethyl adipate appeared successfully in the distillate liquid. The percentage conversion from di-ester to monoester was greatly enhanced (reaching 86%) relative to only 15.3% for the case of reaction without distillation .This means 5 times enhancement . The presence of two layers in both the
... Show MoreThis research presents a new study in reactive distillation by adopting a consecutive reaction . The adopted consecutive reaction was the saponification reaction of diethyl adipate with NaOH solution. The saponification reaction occurs in two steps. The distillation process had the role of withdrawing the intermediate product i.e. monoethyl adipate from the reacting mixture before the second conversion to disodium adipate occurred. It was found that monoethyl adipate appeared successfully in the distillate liquid. The percentage conversion from di-ester to monoester was greatly enhanced (reaching 86%) relative to only 15.3% for the case of reaction without distillation .This means 5 times enhancement . The presence of two layers in both
... Show MoreBioethanol is an attractive fuel with higher potential for energy security and environmental safety. Olive solid residues were used as a raw material for the production of bioethanol through the use of different preliminary treatments . Separate treatments with cellulose, hydrochloric acid (HCl 5%), sulfuric acid (H2SO4 2%), and liquid ammonia NH4OH (20%) were used to convert cellulose and hemicellulose into monosaccharaides. The production of ethanol was observed during the fermentation process using R. minuta under anaerobic conditions. After 3 days of fermentation, lowest concentrations of ethanol of 0.233, 0.249, 0.261, and 0.275 g/ l were produced from ol
... Show More