The optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of gas allocation was executed to maximize oil production rates while minimizing the injected gas volume, thus achieving optimal oil production levels at the most effective gas injection volume for the designated network. The utilization of the PIPESIM Optimizer, founded on genetic algorithm principles, facilitated the attainment of these optimal parameters. The culmination of this study yielded an optimal oil production rate of 18,814 STB/d, accompanied by a gas lift injection rate of 7.56 MMscf/d. This research underscores the significance of strategic gas lift design and optimization in enhancing oil recovery and operational efficiency in complex reservoir systems like the Mishrif formation within the Halfaya oil field.
In this paper, the main work is to minimize a function of three cost criteria for scheduling n jobs on a single machine. We proposed algorithms to solve the single machine scheduling multiobjective problem. In this problem, we consider minimizing the total completion times, total tardiness and maximum tardiness criteria. First a branch and bound (BAB) algorithm is applied for the 1//∑Ci+∑Ti+Tmax problem. Second we compare two multiobjective algorithms one of them based on (BAB) algorithm to find the set of efficient (non dominated) solutions for the 1//(∑Ci ,∑Ti ,Tmax) problem. The computational results show that the algorithm based on (BAB) algorithm is better than the other one for generated the total number of
... Show MoreTask scheduling in an important element in a distributed system. It is vital how the jobs are correctly assigned for each computer’s processor to improve performance. The presented approaches attempt to reduce the expense of optimizing the use of the CPU. These techniques mostly lack planning and in need to be comprehensive. To address this fault, a hybrid optimization scheduling technique is proposed for the hybridization of both First-Come First-Served (FCFS), and Shortest Job First (SJF). In addition, we propose to apply Simulated Annealing (SA) algorithm as an optimization technique to find optimal job’s execution sequence considering both job’s entrance time and job’s execution time to balance them to reduce the job
... Show MoreSeismic inversion technique is applied to 3D seismic data to predict porosity property for carbonate Yamama Formation (Early Cretaceous) in an area located in southern Iraq. A workflow is designed to guide the manual procedure of inversion process. The inversion use a Model Based Inversion technique to convert 3D seismic data into 3D acoustic impedance depending on low frequency model and well data is the first step in the inversion with statistical control for each inversion stage. Then, training the 3D acoustic impedance volume, seismic data and porosity wells data with multi attribute transforms to find the best statistical attribute that is suitable to invert the point direct measurement of porosity from well to 3D porosity distribut
... Show MoreThe open hole well log data (Resistivity, Sonic, and Gamma Ray) of well X in Euphrates subzone within the Mesopotamian basin are applied to detect the total organic carbon (TOC) of Zubair Formation in the south part of Iraq. The mathematical interpretation of the logs parameters helped in detecting the TOC and source rock productivity. As well, the quantitative interpretation of the logs data leads to assigning to the organic content and source rock intervals identification. The reactions of logs in relation to the increasing of TOC can be detected through logs parameters. By this way, the TOC can be predicted with an increase in gamma-ray, sonic, neutron, and resistivity, as well as a decrease in the density log
... Show MoreCadmium-tin oxide (CSO) thin films were fabricated by spray pyrolysis method at different substrate temperatures (Ts). The results showed a significant effect of Ts on the surface morphology and the electrical properties, which in turn has a significant effect on sensor gas sensitivity. The sample prepared at 400 °C appeared in the form of a donut shape, which has the best ozone sensitivity. No ozone sensitivity appeared in-dark, while showed good sensitivity when illuminated with UV at room temperature (RT). The study showed that the photon exposure method can substitute for the conventional method of sensors heating.
This article introduces the concept of finitely null-additive set function relative to the σ– ring and many properties of this concept have been discussed. Furthermore, to introduce and study the notion of finitely weakly null-additive set function relative to the σ– ring as a generalization of some concepts such as measure, countably additive, finitely additive, countably null-additive, countably weakly null-additive and finitely null-additive. As the first result, it has been proved that every finitely null-additive is a finitely weakly null-additive. Finally, the paper introduces a study of the concept of outer measure as a stronger form of finitely weakly null-additive.
The traditional shortest path problem is mainly concerned with identifying the associated paths in the transportation network that represent the shortest distance between the source and the destination in the transportation network by finding either cost or distance. As for the problem of research under study it is to find the shortest optimal path of multi-objective (cost, distance and time) at the same time has been clarified through the application of a proposed practical model of the problem of multi-objective shortest path to solve the problem of the most important 25 commercial US cities by travel in the car or plane. The proposed model was also solved using the lexicographic method through package program Win-QSB 2.0 for operation
... Show MoreThe combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreA robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video str
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show More