The optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of gas allocation was executed to maximize oil production rates while minimizing the injected gas volume, thus achieving optimal oil production levels at the most effective gas injection volume for the designated network. The utilization of the PIPESIM Optimizer, founded on genetic algorithm principles, facilitated the attainment of these optimal parameters. The culmination of this study yielded an optimal oil production rate of 18,814 STB/d, accompanied by a gas lift injection rate of 7.56 MMscf/d. This research underscores the significance of strategic gas lift design and optimization in enhancing oil recovery and operational efficiency in complex reservoir systems like the Mishrif formation within the Halfaya oil field.
The reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i
... Show MoreAutomated clinical decision support system (CDSS) acts as new paradigm in medical services today. CDSSs are utilized to increment specialists (doctors) in their perplexing decision-making. Along these lines, a reasonable decision support system is built up dependent on doctors' knowledge and data mining derivation framework so as to help with the interest the board in the medical care gracefully to control the Corona Virus Disease (COVID-19) virus pandemic and, generally, to determine the class of infection and to provide a suitable protocol treatment depending on the symptoms of patient. Firstly, it needs to determine the three early symptoms of COVID-19 pandemic criteria (fever, tiredness, dry cough and breat
... Show MoreIn this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show MoreThe need to exchange large amounts of real-time data is constantly increasing in wireless communication. While traditional radio transceivers are not cost-effective and their components should be integrated, software-defined radio (SDR) ones have opened up a new class of wireless technologies with high security. This study aims to design an SDR transceiver was built using one type of modulation, which is 16 QAM, and adding a security subsystem using one type of chaos map, which is a logistic map, because it is a very simple nonlinear dynamical equations that generate a random key and EXCLUSIVE OR with the originally transmitted data to protect data through the transmission. At th
... Show MoreIn the present work, an image compression method have been modified by combining The Absolute Moment Block Truncation Coding algorithm (AMBTC) with a VQ-based image coding. At the beginning, the AMBTC algorithm based on Weber's law condition have been used to distinguish low and high detail blocks in the original image. The coder will transmit only mean of low detailed block (i.e. uniform blocks like background) on the channel instate of transmit the two reconstruction mean values and bit map for this block. While the high detail block is coded by the proposed fast encoding algorithm for vector quantized method based on the Triangular Inequality Theorem (TIE), then the coder will transmit the two reconstruction mean values (i.e. H&L)
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe researcher studied transportation problem because it's great importance in the country's economy. This paper which ware studied several ways to find a solution closely to the optimization, has applied these methods to the practical reality by taking one oil derivatives which is benzene product, where the first purpose of this study is, how we can reduce the total costs of transportation for product of petrol from warehouses in the province of Baghdad, to some stations in the Karsh district and Rusafa in the same province. Secondly, how can we address the Domandes of each station by required quantity which is depending on absorptive capacity of the warehouses (quantities supply), And through r
... Show MoreIn this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth
... Show MoreThe main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256) in our research, compressed them by using MLP for each
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show More