Reservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a critical parameter that defines the porosity-permeability relationships of each hydraulic flow unit. Additionally, the flow zone indicator method proves valuable in estimating permeability accurately. In this study, we demonstrate the application of the flow zone indicator method to determine hydraulic flow units within the Khasib formation. By analyzing core data and calculating the Rock Quality Index (RQI) and Flow Zone Indicator (∅Z), we differentiate the formation into four hydraulic flow units based on FZI values. Specifically, HFU 1 represents a rock of poor quality, corresponding to compact and chalky limestone. HFU 2 represents intermediate quality, corresponding to argillaceous limestone, while HFU 3 represents good quality, corresponding to porous limestone. Lastly, HFU 4 signifies an excellent reservoir rock quality characterized by vuggy limestone. By establishing a permeability equation that correlates with effective porosity for each rock type, we successfully estimate permeability. Comparing these estimated permeability values with core permeability reveals a strong agreement with a high correlation coefficient of 0.96%. Consequently, the flow zone indicator method effectively classifies the Khasib formation into four distinct hydraulic flow units and provides an accurate and reliable means of determining permeability in the reservoir. The resulting permeability equations can be applied to wells and depth intervals lacking core measurements, further emphasizing the practical utility of the FZI method.
This paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.
Ciprofloxacin (Cip) and hydrocortisone (Hyd) were simultaneously measured as hydrochloride and sodium succinate, respectively, using the H-point standard addition method (HPSAM). The approach can precisely identify Cip in the presence of Hyd with various analyte-to-interference ratios (5:5, 5:10, 10:5, 10:10) µg.mL-1, in mixed samples containing (1-5µg.ml-1) of Cip, at the wavelengths of (236 and 257) nm. In the same way, Hyd was analyzed in the presence of Cip in different analytes with an interference ratio of (5:5, 5:10, 10:5, 10:10) µg.mL-1, in mixed samples containing (1-5 µg.mL-1) of Hyd, at wavelengths of (266 and 278) nm. The satisfactory results show good reproducibility of the dev
... Show MoreMishrif Formation is the main reservoir in Amara Oil Field. It is divided into three units (MA, TZ1, and MB12). Geological model is important to build reservoir model that was built by Petrel -2009. FZI method was used to determine relationship between porosity and permeability for core data and permeability values for the uncored interval for Mishrif formation. A reservoir simulation model was adopted in this study using Eclipse 100. In this model, production history matching executed by production data for (AM1, AM4) wells since 2001 to 2015. Four different prediction cases have been suggested in the future performance of Mishrif reservoir for ten years extending from June 2015 to June 2025. The comparison has been mad
... Show MoreAbstract
The current research sought to demonstrate the effect of material flow cost accounting on reducing products through the application of material flow cost accounting technique, which works on the optimal utilization of materials and energy and the reduction of environmental impacts.The research aims to clarify the knowledge foundations for material flow cost accounting, in addition to studying the material flow cost accounting technique that helps reduce the cost of products and make them environmentally friendly. To achieve this, the research relied on the descriptive approach with regard to the theoretical aspect of the resea
... Show MoreThe analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
In this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder
... Show MoreTo ensure fault tolerance and distributed management, distributed protocols are employed as one of the major architectural concepts underlying the Internet. However, inefficiency, instability and fragility could be potentially overcome with the help of the novel networking architecture called software-defined networking (SDN). The main property of this architecture is the separation of the control and data planes. To reduce congestion and thus improve latency and throughput, there must be homogeneous distribution of the traffic load over the different network paths. This paper presents a smart flow steering agent (SFSA) for data flow routing based on current network conditions. To enhance throughput and minimize latency, the SFSA distrib
... Show MoreThis study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influe
... Show MoreA sensitive spectrofluorimetric method for the determination of glibenclamide in its tablet formulations has been proposed. The method is based on the dissolving of glibenclamide in absolute ethanol and measuring the native fluorescence at 354 nm after excitation at 302 nm. Beers law is obeyed in the concentration of 1.4 to 10 µg.ml-1 of glibenclamide with a limit of detection (LD) of 0.067 µg.ml-1 and a standard deviation of 0.614. The range percent recoveries (N=3) is 94 - 103.