The study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed and solved with the experimentally obtained kinetics data to evaluate reaction rate constants versus temperature, pre-exponential factors, and activation energy values for the forward and the backward esterification reactions. The activation energies were 34.863 kJ/mol for the forward reaction and 29.731 kJ/mol for the backward reaction. The thermodynamics of the activation step of the forward and reverse reactions was studied based on the hypothesis of forming a complex material that decomposes into a product. The activation steps were studied using Eyring bimolecular collision theory approach, and both ΔH* and ΔS* were determined for forward and backward esterification reactions. The enthalpies of activation were 32.141 kJ/mol and 27.080 kJ/mol for the forward reaction and the backward reaction, and the entropies of activation were - 193.7 and -212.7 J/mol. K for the forward reaction and the backward reaction, respectively.
n this study new derivatives of Schiff bases (5-10) were synthesized from the new starting material 1 . Which has been synthesized by the reaction of (1 mol.) of dichloroacetic acid with two moles of morpholine, in the presence of potassium hydroxide, Ester derivatives 2 and 3 were synthesized by the reaction of 1 with methanol or ethanol respectively in the presence of sulphuric acid as catalyst . Compound 2 was also prepared from dimethylsulphate with high yield , 2 and 3 was used to synthesized 2,2-dimorpholinylacetohydrazide 4 via reaction with NH2NH2.H2O 80% .Imines (5-10) were synthesized via the reaction of 4 with appropriate aromatic aldehydes in the presence of G.A.A as a catalyst . Derivatives compounds (1-10) were identifie
... Show MoreIn this paper, the dynamics of scavenger species predation of both susceptible and infected prey at different rates with prey refuge is mathematically proposed and studied. It is supposed that the disease was spread by direct contact between susceptible prey with infected prey described by Holling type-II infection function. The existence, uniqueness, and boundedness of the solution are investigated. The stability constraints of all equilibrium points are determined. In addition to establishing some sufficient conditions for global stability of them by using suitable Lyapunov functions. Finally, these theoretical results are shown and verified with numerical simulations.
In this study, the preparation and characterization of hyacinth plant /chitosan composite, as a heavy metal removal, were done. Water hyacinth plant (Eichhorniacrasspes) was collected from Tigris river in Baghdad. The root and shoot parts of plant were ground to powder. Composite materials were prepared at different ratios of plant part (from 2.9% to 30.3%, wt /wt) which corresponds to (30-500mg) of hyacinth plant (root and shoot) and chitosan. The results showed that all examined ratios of plant parts have an excellent absorption to copper (Cu (II)). Moreover, it was observed that 2.9% corresponds (30mg) of plant root revealed highest removal (82.7%) of Pb (II), while 20.23% of shoot removed 61% of Cd (II) within 24 hr
... Show MoreBiosorption is an effective method to remove toxic metals from wastewaters. In this study biosorption of lead and chromium ions from solution was studied using Citrobacter freundii and Citrobacter kosari isolated from industrial wastewater. The experimental results showed that optimum grwoth temperature for both bacteria is 30oC and the optimum pH is 7 &6 for C. freundii and C. kosari respectively. While the optimum incubation period to remove Pb and Cr for C. freundii and C. kosari is 4 days and 3days respectively. Also the biosorption of Pb and Cr in mixed culture of bacteria and mixed culture of Pb and Cr was investigated. Result indicate that uptake of Cr and Pb for C.freundii, C. kosari and in mixes culture of both bacteria is 58%, 53%
... Show MoreThe goal of this experimental study is to determine the effects of different parameters (Flow rate, cuttings density, cuttings size, and hole inclination degree) on hole cleaning efficiency. Freshwater was used as a drilling fluid in this experiment. The experiments were conducted by using flow loop consist of approximately 14 m (46 ft) long with transparent glass test section of 3m (9.84 ft.) long with 4 inches (101.6 mm) ID, the inner metal drill pipe with 2 inches (50.8 mm) OD settled with eccentric position positive 0.5. The results obtained from this study show that the hole cleanings efficiency become better with high flow rate (21 m3/hr) and it increase as the hole inclination angles increased from 60 to 90 degree due to dominated
... Show MoreThe relationship of hyperuricemia to kidney disease, diabetes, hypertension and the risk of cardiovascular diseases remain controversial. The aim of this study is to evaluate the use of uric acid (UA) levels to find the higher risk of cardiovascular disease (CVD) in patients with end stage renal disease that have diabetic nephropathy (DN), nephropathy with hypertension (NH) and patients with both diabetic nephropathy with hypertension (DNH). This study deals with 115 patients with end-stage renal disease under hemodialysis sub-grouped into 35 patients with (DN), 40 patients with (NH), and 40 patients with (DNH). Some biochemical parameters were determined in the serum of all participants such as HbA1c, fasting blood glucose (FBG), UA, urea,
... Show MoreThe pollution producing from textile industries effluents is growing since the years, due to at discharged lots of it in water without treatment. The resulting effluent is colourful, highly toxic, and poses a significant environmental hazard. This problem can be solved by using enzymic biological treatment, where the Congo red dye was used with concentrations (100,200,300,500) mg /L, pH values (3,4,5,6,7,8), and variable temperatures (25,35,45)°C, the best removal of Congo red (CR) dye under optimum conditions for degradation was at concentration of 100 mg/L, at (pH 6, 25 °C) with efficiency of 99.85 % using the peroxidase enzyme extracted from red radish plant, while the removal percentage decreased when increase dye concentration
... Show More