Preferred Language
Articles
/
ijcpe-867
Investigating the Performance of Rechargeable Zinc-Air Fuel Cell
...Show More Authors

   Zinc-air fuel cells (ZAFCs) are a promising energy source that could compete with lithium-ion batteries and perhaps proton-exchange membrane fuel cells (PEMFCs) for next-generation electrified transportation and energy storage applications. In the present work, a flow-type ZAFC with mechanical rechargeable was adopted, combined with an auxiliary cell (electrolyzer) for zinc renewal and electrolyte recharge to the main cell. In this work a practical study was performed to calculate the cell capacity (Ah), as well as study the electrolysis cell efficiency by current efficiency, and study the effective parameters that have an influence on cell performance such as space velocity and current density. The best parameters were selected to obtain the best performance for cell operation. The obtained cell capacity was 2.4Ah. The best performance of the electrolyzer was obtained with 0.6min-1 space velocity. At the same time, the best performance of the electrolyzer was when the value of the current density was 200A/m2

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Mar 18 2021
Journal Name
Egyptian Journal Of Chemistry
Investigation of the Influence of Membrane Type on the Performance of Microbial Fuel Cell
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Influence of design anode and cathode channel on (PEMFC) fuel cell performance
...Show More Authors

View Publication
Scopus (14)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Mon Mar 29 2021
Journal Name
Eureka: Physics And Engineering
INVESTIGATION ON THE AIR-GAS CHARACTERISTICS OF AIR-HYDROGEN MIXER DESIGNED FOR DUAL FUEL – ENGINES
...Show More Authors

High smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between th

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Improving the Performance of Constructed Wetland Microbial Fuel Cell (CW- MFC) for Wastewater Treatment and Electricity Generation
...Show More Authors

The current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless steel

... Show More
Crossref (3)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Improving the Performance of Constructed Wetland Microbial Fuel Cell (CW- MFC) for Wastewater Treatment and Electricity Generation
...Show More Authors

The current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless st

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Optimization and Modeling the Performance of a Mediator-less Microbial Fuel Cell using Butler-Volmer-Monod Model
...Show More Authors

In this study, a one-dimensional model represented by Butler-Volmer-Monod (BVM) model was proposed to compute the anode overpotential and current density in a mediator-less MFC system. The system was fueled with various organic loadings of real field petroleum refinery oily sludge to optimize the favorable organic loading for biomass to operate the suggested system. The increase in each organic loading showed higher resistance to electrons transport to the anode represented by ohmic loss. On the contrary, both activation and mass transfer losses exhibited a noticeable decrement upon the increased organic loadings. However, current density was improved throughout all increased loads achieving a maximum current density of 5.2 A/m3

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
International Journal Of Ambient Energy
Energy generation by membraneless microfluidic fuel cell using acidic wastewater as a fuel
...Show More Authors

A simple and novel membraneless paper-based microfluidic fuel cell was presented in this study. The occurrence of laminar flow was employed to ensure no mixing of the fuel and oxidant fluids along the bath of reaction. The acidic wastewater was used as a fuel. It was an air-breathing cell, so air and tab water were used as oxidants. Both the fuel and tab water flowed continuously under gravity. Whatman filter paper was used for preparation of the fuel cell channel and two carbon fibre electrodes were used and firmed on the edges of the cell. The performance of the cell was examined over three consecutive days. The results indicated that the present cell has the potential to generate electric power, but an extensive study is required to harv

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Advanced nano membrane for an alkaline Fuel Cell
...Show More Authors
Abstract<p>Structural and optical properties were studied as a function of Nano membrane after prepared, for tests. Nano membrane was deposited by the spray coating method on substrates (glass) of thickness 100 mm. The X-ray diffraction spectra of (CNTs, WO3) were studied. AFM tests are good information about the roughness, It had been designed electrolysis cell and fuel cell. Studies have been performed on electrochemical parameters.</p>
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Sep 01 2018
Journal Name
International Science And Engineering Congress Book
Preparation platinum Nano catalysts for Fabricating membranes fuel cell
...Show More Authors

Preview PDF
Publication Date
Thu Apr 18 2019
Journal Name
Iraqi Journal Of Science
Fabrication and Study of Nano catalysis for Alkaline Fuel Cell
...Show More Authors

In this paper the manufacture of an alkaline fuel cell electrodes made upfrom a Nano mesh (Pt:NiO) catalyst has been studying , made from a Nano mesh (Pt:NiO ) catalyst. The general morphology of the samples is were imaged by using with the an Atomic Force Microscope (AFM) to determine the roughness of the prepared surface, it constructed from nanostructure with dimensions in order of 35 nm. The Structural characteristics were studied through the analysis of X-ray diffraction (XRD) of the prepared nanomaterial for determining the yielding phase;1. 72 volt was also obtained at 0.02 A/cm2 current density for an alkaline fuel cell.

View Publication Preview PDF