Preferred Language
Articles
/
LBYAHYcBVTCNdQwCFziU
Investigation of the Influence of Membrane Type on the Performance of Microbial Fuel Cell
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Influence of design anode and cathode channel on (PEMFC) fuel cell performance
...Show More Authors

View Publication
Scopus (14)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Improving the Performance of Constructed Wetland Microbial Fuel Cell (CW- MFC) for Wastewater Treatment and Electricity Generation
...Show More Authors

The current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless steel

... Show More
Crossref (3)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Improving the Performance of Constructed Wetland Microbial Fuel Cell (CW- MFC) for Wastewater Treatment and Electricity Generation
...Show More Authors

The current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless st

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Optimization and Modeling the Performance of a Mediator-less Microbial Fuel Cell using Butler-Volmer-Monod Model
...Show More Authors

In this study, a one-dimensional model represented by Butler-Volmer-Monod (BVM) model was proposed to compute the anode overpotential and current density in a mediator-less MFC system. The system was fueled with various organic loadings of real field petroleum refinery oily sludge to optimize the favorable organic loading for biomass to operate the suggested system. The increase in each organic loading showed higher resistance to electrons transport to the anode represented by ohmic loss. On the contrary, both activation and mass transfer losses exhibited a noticeable decrement upon the increased organic loadings. However, current density was improved throughout all increased loads achieving a maximum current density of 5.2 A/m3

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Advanced nano membrane for an alkaline Fuel Cell
...Show More Authors
Abstract<p>Structural and optical properties were studied as a function of Nano membrane after prepared, for tests. Nano membrane was deposited by the spray coating method on substrates (glass) of thickness 100 mm. The X-ray diffraction spectra of (CNTs, WO3) were studied. AFM tests are good information about the roughness, It had been designed electrolysis cell and fuel cell. Studies have been performed on electrochemical parameters.</p>
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Investigating the Performance of Rechargeable Zinc-Air Fuel Cell
...Show More Authors

   Zinc-air fuel cells (ZAFCs) are a promising energy source that could compete with lithium-ion batteries and perhaps proton-exchange membrane fuel cells (PEMFCs) for next-generation electrified transportation and energy storage applications. In the present work, a flow-type ZAFC with mechanical rechargeable was adopted, combined with an auxiliary cell (electrolyzer) for zinc renewal and electrolyte recharge to the main cell. In this work a practical study was performed to calculate the cell capacity (Ah), as well as study the electrolysis cell efficiency by current efficiency, and study the effective parameters that have an influence on cell performance such as space velocity and current density. The best parameters were selected to

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 10 2023
Journal Name
Current Microbiology
Influence of Light Color on Power Generation and Microalgae Growth in Photosynthetic Microbial Fuel Cell with Chlorella Vulgaris Microalgae as Bio-Cathode
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Mon Jun 28 2021
Journal Name
Journal Of Engineering
The Catholyte Effects on The Microbial Desalination Cell Performance of Desalination and Power Generation
...Show More Authors

A microbial desalination cell (MDC) is a new approach to bioelectrochemical systems. It provides a more sustainable way to electrical power production, saltwater desalination, and wastewater treatment at the same time. This study examined three operation modes of the MDC: chemical cathode, air cathode, and biocathode MDC, to give clear sight of this system's performance. The experimental work results for these three modes were recorded as power densities generation, saltwater desalination rates, and COD removal percentages. For the chemical cathode MDC, the power density was 96.8 mW/m2, the desalination rate was 84.08 ppm/hr, and the COD removal percentage was 95.94%. The air cathode MDC results were different

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
The The Use of Copper and Aluminum Electrodes for Energy Production in a Microbial Fuel Cell
...Show More Authors

Microbial fuel cell is a device that uses the microorganism metabolism for the production of electricity under specific operating conditions. Double chamber microbial fuel cell was tested for the use of two cheap electrode materials copper and aluminum for the production of electricity under different operating conditions. The investigated conditions were concentration of microorganism (yeast) (0.5- 2 g/l), solutions temperature (33-45 oC) and concentration of glucose as a substrate (1.5- 6 g/l). The results demonstrated that copper electrode exhibit good performance while the performance of aluminum is poor. The electricity is generated with and without the addition of substrate. Addition of glucose substrate

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Journal Of Engineering Research
Design, analysis and development of a proton exchange membrane in fuel cell
...Show More Authors

View Publication
Scopus Crossref