The present research was conducted to reduce the sulfur content of Iraqi heavy naphtha by adsorption using different metals oxides over Y-Zeolite. The Y-Zeolite was synthesized by a sol-gel technique. The average size of zeolite was 92.39 nm, surface area 558 m2/g, and pore volume 0.231 cm3/g. The metals of nickel, zinc, and copper were dispersed by an impregnation method to prepare Ni/HY, Zn/HY, Cu/HY, and Ni + Zn /HY catalysts for desulfurization. The adsorptive desulfurization was carried out in a batch mode at different operating conditions such as mixing time (10,15,30,60, and 600 min) and catalyst dosage (0.2,0.4,0.6,0.8,1, and 1.2 g). The most of the sulfur compounds were removed at 10 min for all catalyst types. The maximum sulfur removal was 56% using (Ni+Zn)/HY catalyst at 1.2 g dose for 24 h. The adsorption kinetics and isotherm of sulfur removal were studied, and results indicated that desulfurization adsorption kinetic was 2nd order, and Temkin and Freundlich models were the best representation isotherm.
Background: Errors of horizontal condylar inclinations and Bennett angles had largely affected the articulation of teeth and the pathways of cusps. The aim of this study was to estimate and compare between the horizontal condylar (protrusive) angles and Bennett angles of full mouth rehabilitation patients using two different articulator systems. Materials and Methods: Protrusive angles and Bennett angles of 50 adult males and females Iraqi TMD-free full mouth rehabilitation patients were estimated by using two different articulator systems. Arbitrary hinge axis location followed by protrusive angles and Bennett angles, estimation was done by a semiadjustable articulator system. A fully adjustable articulator system was utilized to locate th
... Show MoreThis work intends to develop an effective heavy metal-free modifier having properties comparable to traditional stabilizers and flame retardants, simultaneously being environmentally friendly and may be superior in many aspects. The important requirement focused on is: how to increase thermal stability and flame retardancy of flexible poly(vinyl chloride). Due to the typical materials now used with poly(vinyl chloride), which increases health and environmental concerns, utilizing a novel heavy metal-free additive will make poly(vinyl chloride) substantially safer. We have used an artificial silicate for this aim, which proved to be an efficient flame retardant and surprisingly showed excellent heat stabilizing effect. Thermal stabi
... Show MoreIn this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers
The study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed a
... Show MoreFeedback on students’ assignments can be done in many different ways. Nowadays, the growing number of students at universities has increased the burden on the instructors to give feedback on students’ writings quickly and efficiently. As such, new methods of modern online automated feedback tools, such as Hemingway app and ecree,are used to assist and help instructors. Hence, this research is an explanatory study to examine the effect of using the online automated feedback on some Iraqi EFL learners’ writings at the university level. The study comprised 60 students enrolled in an English language course at the University of Anbar. They were divided randomly into two groups, experi
... Show MoreFiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano
... Show MoreIn the present research, the electrical properties which included the ac-conductivity (σac), loss tangent of dielectric (tan δ) and real dielectric constant (ε’) are studied for nano polycarbonate in different pressures and frequencies as a function of temperature these properties were studied at selective temperature gradients which are (RT-50-100-150-250)°C. The results of the study showed that the values of dielectric constant and dissipation factor increase with increasing pressure and temperature and decreases by increasing frequency. And the results of electrical conductivity showed that it increases with increasing temperature, pressure and frequency.
In recent years, nano-modified asphalt has gained significant attraction from researchers in the design of asphalt pavement fields. The recently discovered Titanium dioxide nanoparticles (TiO2) are among the most exciting and promising nanomaterials. This study examines the effect of 1, 3, 5, and 7% of nano-TiO2 by weight of asphalt on some of its rheological and hardened properties. The experimental study included physical and rheological properties. The asphalt penetration, softening point, ductility, and rotational viscometer tests indicate that 5% nano-TiO2 is the ideal amount to be added to bitumen as a modifier. The
Simple, sensitive and accurate two methods were described for the determination of terazosin. The spectrophotometric method (A) is based on measuring the spectral absorption of the ion-pair complex formed between terazosin with eosin Y in the acetate buffer medium pH 3 at 545 nm. Method (B) is based on the quantitative quenching effect of terazosin on the native fluorescence of Eosin Y at the pH 3. The quenching of the fluorescence of Eosin Y was measured at 556 nm after excitation at 345 nm. The two methods obeyed Beer’s law over the concentration ranges of 0.1-8 and 0.05-7 µg/mL for method A and B respectively. Both methods succeeded in the determination of terazosin in its tablets