The effect of operating parameters on the batch scale separation of hydrocarbon mixture (benzene and hexane) using
emulsion liquid membrane technique is reported. Sparkleen detergent was used as surfactant and heavy mineral oil as
solvent to receive the permeates.
From the experimental results, the parameters that influenced the permeation are, composition of feed, contact time
with solvent, ratio of volume of solvent to volume of hydrocarbon feed, ratio of volume of surfactant solution to volume
of hydrocarbon feed, surfactant concentration, mixing intensity and glycerol as polar additive in the surfactant solution
to eliminate drop breakup.
The best conditions for the separation in this study were found to be: composition of feed (mole fraction of
benzene=0.5245), contact time of 10min. , ratio of volumes of solvent to feed equal 3.5 , ratio of volumes of surfactant
solution to feed of 0.4, surfactant concentration of 1wt%, mixing intensity equal 1000rpm and 70% by weight of polar
additive. These conditions gave a separation factor of (8.0).
In this paper flotation method experiments were performed to investigate the removal of lead and zinc. Various parameters such as pH, air flow rate, collector concentrations, collector type and initial metal concentrations were tested in a bubble column of 6 cm inside diameter. High recoveries of the two metals have been obtained by applying the foam flotation process, and at relatively short time 45 minutes . The results show that the best removal of lead about 95% was achieved at pH value of 8 and the best removal of zinc about 93% was achieved
at pH value of 10 by using 100 mg/l of Sodium dodecylsulfate (SDS) as a collector and 1% ethanol as a frother. The results show that the removal efficiency increased with increasing initial m
Structural and optical properties were studied as a function of Nano membrane after prepared, for tests. Nano membrane was deposited by the spray coating method on substrates (glass) of thickness 100 mm. The X-ray diffraction spectra of (CNTs, WO3) were studied. AFM tests are good information about the roughness, It had been designed electrolysis cell and fuel cell. Studies have been performed on electrochemical parameters.
Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.