In this work, a numerical study is performed to predict the solution of two – dimensional, steady and laminar mixed convection flow over a square cylinder placed symmetrically in a vertical parallel plate. A finite difference method is employed to solve the governing differential equations, continuity, momentum, and energy equation balances. The solution is obtained for stream function, vorticity and temperature as dependent variables by iterative technique known as successive over relaxation. The flow and temperature patterns are obtained for Reynolds number and Grashof number at (Re= -50,50,100,-100) (positive or negative value refers to aidding or opposing buoyancy , +1 assisting flow, -1 opposing flow) and (102 to 105) , respectively. The results displaced that the recirculation length above the cylinder increases with the increase in Gr number and the average Nu number is the highest at the lower surface of the cylinder, while is the lowest at the top of the cylinder surface. A comparison between the obtained results and the published computational studies has been made and it showed a good agreement.
The method of measurement dosimetry in neutron – gamma field by using CaSo4 : Dy (PTFE) disc which has a diameter of 1.3mm and thickness of 0.2mm and using hydrogenated material as a converters of neutron to recoil protons (n-p) reaction, the discs were irradiated by neutron source (241Am-Be) with flux of 4.5?105 n/cm2s for different time to obtain different dose. The TL signals, which we have been obtained by using the converters, are increases to 71%. So we can resolve the neutron and gamma in mixed field.
Reservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a cr
... Show MoreThis research study experimentally the effect of air flow rate on humidification process
parameters. Experimental data are obtained from air conditioning study unit T110D. Results obtained
from experimental test, calculations and psychometrics software are discussed. The effect of air flow rate
on steam humidification process parameters as a part of air-conditioning processes can be explained
according to obtained results. Results of the steam humidification processes (1,2) with and without
preheating with 5A and 7.5A shows decreasing in dry bulb temperature, humidity ratio, and heat add to
moist air with increasing air flow rate, but humidification load, and total energy of moist air increase with
increasing air flo
The current work is focused on the rock typing and flow unit classification for reservoir characterization in carbonate reservoir, a Yamama Reservoir in south of Iraq (Ratawi Field) has been selected, and the study is depending on the logs and cores data from five wells which penetrate Yamama formation. Yamama Reservoir was divided into twenty flow units and rock types, depending on the Microfacies and Electrofacies Character, the well logs pattern, Porosity–Water saturation relationship, flow zone indicator (FZI) method, capillary pressure analysis, and Porosity–Permeability relationship (R35) and cluster analysis method. Four rock types and groups have been identified in the Yamama formation de
Simulation of the Linguistic Fuzzy Trust Model (LFTM) over oscillating Wireless Sensor Networks (WSNs) where the goodness of the servers belonging to them could change along the time is presented in this paper, and the comparison between the outcomes achieved with LFTM model over oscillating WSNs with the outcomes obtained by applying the model over static WSNs where the servers maintaining always the same goodness, in terms of the selection percentage of trustworthy servers (the accuracy of the model) and the average path length are also presented here. Also in this paper the comparison between the LFTM and the Bio-inspired Trust and Reputation Model for Wireless Sensor Network
... Show MoreThis paper presents a study of a syndrome coding scheme for different binary linear error correcting codes that refer to the code families such as BCH, BKLC, Golay, and Hamming. The study is implemented on Wyner’s wiretap channel model when the main channel is error-free and the eavesdropper channel is a binary symmetric channel with crossover error probability (0 < Pe ≤ 0.5) to show the security performance of error correcting codes while used in the single-staged syndrome coding scheme in terms of equivocation rate. Generally, these codes are not designed for secure information transmission, and they have low equivocation rates when they are used in the syndrome coding scheme. Therefore, to improve the transmiss
... Show MoreMost studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and b
... Show More