Particulate matter (PM) emitted from diesel engine exhaust have been measured in terms of mass, using
99.98 % pure ethanol blended directly, without additives, with conventional diesel fuel (gas – oil),to
get 10 % , 15 %, 20 % ethanol emulsions . The resulting PM collected has been compared with those
from straight diesel. The engine used is a stationary single cylinder, variable compression ratio Ricardo
E6/US. This engine is fully instrumented and could run as a compression or spark ignition.
Observations showed that particulate matter (PM) emissions decrease with increasing oxygenate
content in the fuel, with some increase of fuel consumption, which is due to the lower heating value of
ethanol. The reduction in PM formation increased with load increase, maximum reduction were 58% at
1800 rpm. There was no significant reduction observed at low loads. It could be concluded from the
test results that ethanol may be an alternative to / or partially substitute, fossil fuels.
Generally fossil based fuels are used in internal combustion engines as an energy source.
Excessive use of fossil based fuels diminishes present reserves and increases the air pollution in
urban areas. This enhances the importance of the effective use of present reserves and/or to develop
new alternative fuels, which are environment friendly. Use of alternative fuel is a way of emission
control. The term “Alternative Gaseous Fuels” relates to a wide range of fuels that are in the
gaseous state at ambient conditions, whether when used on their own or as components of mixtures
with other fuels.
In this study, a single cylinder diesel engine was modified to use LPG in dual fuel mode to study
the performance, emis
An experiment was conducted to study how SAE 50 engine oil contaminated with diesel fuel affects engine performance. The engine oil was contaminated with diesel fuel at concentrations of 0%, 1%, and 3%. The following performance characteristics were studied: brake-specific fuel consumption, brake thermal efficiency, friction power, and exhaust gas temperature. Each treatment was tested three times. The three treatments (0%, 1%, and 3%) were analyzed statistically with a one-way ANOVA model at the 5% probability level to determine if the three treatments produced significant differences in engine performance. The statistical results showed that there were significant differences in engine performance metrics among the three treatments. The 3
... Show MoreLiquefied petroleum gas (LPG), Natural gas (NG) and hydrogen were all used to operate spark ignition internal combustion engine Ricardo E6. A comparison of CO emissions emitted from each case, with emissions emitted from engine fueled with gasoline as a fuel is conducted.
The study was accomplished when engine operated at HUCR for gasoline n(8:1), was compared with its operation at HUCR for each fuel. Compression ratio, equivalence ratio and spark timing were studied at constant speed 1500 rpm.
CO concentrations were little at lean ratios; it appeared to be effected a little with equivalence ratio in this side, at rich side its values became higher, and it appeared to be effected by equivalence ratio highly, the results s
... Show MoreIn this study, the effect of ceramic coating on the performance and gases emission on diesel engine was investigated. A four-stroke, direct injected, single cylinder, diesel engine was tested at constant speed and at different load conditions without coating. Then, the inlet and exhaust valves faces were coated by about 500µm with ceramic materials. Ceramic layers were made of YttriaStabilized Zirconia (YSZ), and NiCrAl as a bond coat. The coating technique adapted in this work is the flame spray method. The engine with valves ceramiccoated research was tested for the same operation conditions of the engine (without coating). The results indicate a reduction in both fuel consumption by about 7.6% and particulate emissions by about (13
... Show MoreSince 1990 internal combustion engines and variable systems has been considered as emission. Noise can be defined as undesirable sound, and in high levels it can be considered ahealth hazard. Large internal combustion engines produce high levels of noise. In many countries there are laws restricting the noise levels in large engine rooms and fixed applications. Locomotives engines have the minimum emission influence because of noise control techniques capability.
In this paper study on a single cylinder internal combustion engine was conducted. The engine works by adding ethanol to gasoline, at variable speeds, without adding ethanol, and with adding 10 and 20% ethanol in volumetric ratio. Using one sound insulator or two or with
... Show MoreThe performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization des
The performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization des
The performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization design (CRD), with three replicates for each treatment at th
... Show MoreDue to the energy crisis and the stringent environmental regulations, diesel engines are offering good hope for automotive vehicles. However, a lot of work is needed to reduce the diesel exhaust emissions and give the way for full utilization of the diesel fuel’s excellent characteristics.
A kind of cetane number improver has been proposed and tested to be used with diesel fuel as ameans of reducing exhaust emissions. The addition of (2-ethylhexyl nitrate) was designed to raise fuel cetane number to three stages, 50, 52 and 55 compared to the used conventional diesel fuel whose CN was 48.5. The addition of CN improver results in the decre
... Show More