In all process industries, the process variables like flow, pressure, level, concentration
and temperature are the main parameters that need to be controlled in both set point
and load changes.
A control system of propylene glycol production in a non isothermal (CSTR) was
developed in this work where the dynamic and control system based on basic mass
and energy balance were carried out.
Inlet concentration and temperature are the two disturbances, while the inlet
volumetric flow rate and the coolant temperature are the two manipulations. The
objective is to maintain constant temperature and concentration within the CSTR.
A dynamic model for non isothermal CSTR is described by a first order plus dead
time (FOPDT).
The conventional PI and PID control were studied and the tuning of control
parameters was found by Ziegler-Nichols reaction curve tuning method to find the
best values of proportional gain (Kc), integral time ( I) and derivative time ( D).
The conventional controller tuning is compared with IMC techniques in this work and
it was found that the Ziegler –Nichols controller provides the best control for the
disturbance and the worst for the set-point change, while the IMC controller results
show satisfactory set-point responses but sluggish disturbance responses because the
approximate FOPTD model has relatively small time delay.
Feedforward and feedforward combined with feedback control systems were used as
another strategy to compare with above strategies. Feedforward control provides a
better response to disturbance rejection than feedback control with a steady state
deviation (offset). Thus, a combined feedforward-feedback control system is preferred
in practice where feedforward control is used to reduce the effects of measurable
disturbances, while feedback trim compensates for inaccuracies in the process model,
measurement error, and unmeasured disturbances. Also the deviation (offset) in
feedforward control was eliminated.
In this research velocity of moving airplane from its recorded digital sound is introduced. The data of sound file is sliced into several frames using overlapping partitions. Then the array of each frame is transformed from time domain to frequency domain using Fourier Transform (FT). To determine the characteristic frequency of the sound, a moving window mechanics is used, the size of that window is made linearly proportional with the value of the tracked frequency. This proportionality is due to the existing linear relationship between the frequency and its Doppler shift. An algorithm was introduced to select the characteristic frequencies, this algorithm allocates the frequencies which satisfy the Doppler relation, beside that the tra
... Show MoreChaotic features of nuclear energy spectrum in 68Ge nucleus are investigated by nuclear shell model. The energies are calculated through doing shell model calculations employing the OXBASH computer code with effective interaction of F5PVH. The 68Ge nucleus is supposed to have an inert core of 56Ni with 12 nucleons (4 protons and 8 neutrons) move in the f5p-model space ( and ). The nuclear level density of considered classes of states is seen to have a Gaussian form, which is in accord with the prediction of other theoretical studies. The statistical fluctuations of the energy spectrum (the level spacing P(s) and the Dyson-Mehta (or statistics) are well described by the Gaussian orthogonal ens
... Show MoreThat the essential contribution of this research is a description of how complex systems analysis service of the properties of the queue in Baghdad Teaching Hospital using a technique network is techniques method (Q - GERT) an acronym of the words:
Queuing theory _ Graphical Evaluation and Review Technique
Any method of assessment and review chart where you will be see the movement flow of patients within the system and after using this portal will be represented system in the form of planned network probabilistic analysis and knowledge of statistical distributions appropriate for times of arrival and departure were using the program ready (Win QSB) and simulatio
... Show More إن المقصود باختبارات حسن المطابقة هو التحقق من فرضية العدم القائمة على تطابق مشاهدات أية عينة تحت الدراسة لتوزيع احتمالي معين وترد مثل هكذا حالات في التطبيق العملي بكثرة وفي كافة المجالات وعلى الأخص بحوث علم الوراثة والبحوث الطبية والبحوث الحياتية ,عندما اقترح كلا من Shapiro والعالم Wilk عام 1965 اختبار حسن المطابقة الحدسي مع معالم القياس
(
Five isolates of Gram negative bacteria (Klebsiella pneumoniae, Psuedomonas auroginosa, proteus mirabilis and two strains of E.coli) were in quested for the ability of bearing silver nanoparticles by using LB medium, all the isolates of bacteria were buttered brown color just as soon as mixed the supernatant of bacterial culture with AgNO3 solution, that refered the biosynthesis of Silver nanoparticles (Ag NPs). UV–visible spectrophotometer and Fourier transform infrared (FTIR) spectroscopy were utilized for estimation of (Ag NPs). The five isolates of bacteria were tendered to produce spontaneous mutants by using different kinds of antibiotics, Ampicillin put to use for making mutant in E.coli and Proteus mirabillis, while Pseudom
... Show MoreIn this research, the degradation of Dazomet has been studied by using thermal Fenton process and photo-Fenton processes under UV and lights sun. The optimum values of amounts of the Fenton reagents have been determined (0.07g FeSO4 .7H2O, 3.5µl H2O2) at 25 °C and at pH 7 where the degradation percentages of Dazomet were recorded high. It has been found that solar photo Fenton process was more effective in degradation of Dazomet than photo-Fenton under UV-light and thermal Fenton processes, the percentage of degradation of Dazomet by photo-Fenton under sun light are 88% and 100% at 249 nm and 281 nm respectively, while the percentages of degradation for photo-Fenton under UV-light are 87%, 96% and for thermal Fenton are 70% and 66.8% at 2
... Show More