Preferred Language
Articles
/
vhe4XI8BVTCNdQwCqm6d
Study of the matter density distributions of halo nuclei 6He and 16C using the binary cluster model

The harmonic oscillator (HO) and Gaussian (GS) wave functions within the binary cluster model (BCM) have been employ to investigate the ground state neutron, proton and matter densities as well as the elastic form factors of two- neutron 6He and 16C halo nuclei. The long tail is a property that is clearly revealed in the density of the neutrons since it is found in halo orbits. The existence of a long tail in the neutron density distributions of 6He and 16C indicating that these nuclei have a neutron halo structure. Moreover, the matter rms radii and the reaction cross section (𝜎𝑅 ) of these nuclei have been calculated using the Glauber model.

View Publication
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Study of the proton halo structure of nuclei 23Al and 27P using the binary cluster model

The neutron, proton, and matter densities of the ground state of the proton-rich 23Al and 27P exotic nuclei were analyzed using the binary cluster model (BCM). Two density parameterizations were used in BCM calculations namely; Gaussian (GS) and harmonic oscillator (HO) parameterizations. According to the calculated results, it found that the BCM gives a good description of the nuclear structure for above proton-rich exotic nuclei. The elastic form factors of the unstable 23Al and 27P exotic nuclei and those of their stable isotopes 27Al and 31P are studied by the plane-wave Born approximation. The main difference between the elastic form factors of unstable nuclei and the

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Jul 15 2020
Journal Name
Modern Physics Letters A
Nuclear matter distributions of neutron rich 6He, 11Li, 14Be and 17B halo nuclei studied by the Bear Hodgson potential

The radial wave functions of the Bear–Hodgson potential have been used to study the ground state features such as the proton, neutron and matter densities and the as- sociated rms radii of two neutrons halo 6He, 11Li, 14Be and 17B nuclei. These halo nuclei are treated as a three-body system composed of core and outer two-neutron (Core + n + n). The radial wave functions of the Bear–Hodgson potential are used to describe the core and halo density distributions. The interaction of core-neutron takes the Bear–Hodgson potential form. The outer two neutrons of 6He and 11Li interact by the realistic interaction REWIL whereas those of 14Be and 17B interact by the realistic interaction of HASP. The obtained results show that this model succee

... Show More
View Publication
Publication Date
Thu Aug 31 2017
Journal Name
Pramana
Matter density distributions and elastic form factors of some two-neutron halo nuclei

The Skyrme–Hartree–Fock (SHF) method with MSK7 Skyrme parameter has been used to investigate the ground-state properties for two-neutron halo nuclei 6He, 11Li, 12Be and 14Be. These ground-state properties include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form factors. These calculations clearly reveal the long tail characterizing the halo nuclei as a distinctive feature.

Scopus (14)
Crossref (11)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Study of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei

In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.

Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Science
Elastic electron scattering from 6He and 11Li halo nuclei

The binary cluster model (BCM) and the two-frequency shell model (TFSM) have been used to study the ground state matter densities of neutron-rich 6He and 11Li halo nuclei. Calculations show that both models provide a good description on the matter density distribution of above nuclei. The root-mean square (rms) proton, neutron and matter radii of these halo nuclei obtained by TFSM have been successfully obtained. The elastic charge form factors for these halo nuclei are studied through combining the charge density distribution obtained by TFSM with the plane wave Born approximation (PWBA).

View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Physics
Elastic Form Factors and Matter Density Distributions of Some Neutron-Rich Nuclei

The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related  radii are investigated using the two-body model of   within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is  calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Nov 24 2021
Journal Name
Iraqi Journal Of Science
Theoretical Study of Nuclear Density Distributions and Elastic Electron Scattering form Factors for Some Halo Nuclei

The nuclear matter density distributions, elastic electron scattering charge form
factors and root-mean square (rms) proton, charge, neutron and matter radii are
studied for neutron-rich 6,8He and 19C nuclei and proton-rich 8B and 17Ne nuclei. The
local scale transformation (LST) are used to improve the performance radial wave
function of harmonic-oscillator wave function in order to generate the long tail
behavior appeared in matter density distribution at high . A good agreement results
are obtained for aforementioned quantities in the used model.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Matter Density Distributions and Reaction Cross Sections for 8Li and 22N Exotic Nuclei

     The Harmonic Oscillator (HO) and Gaussian (GS) wave functions within the Binary Cluster Model (BCM) were employed to investigate neutron, proton and matter densities of the ground state as well as the elastic proton form factors of one neutron 8Li and 22N halo nuclei. The long tail is a property that is clearly shown in the neutron density. The existence of a long tail in the neutron densities of 8Li and 22N indicates that these nuclei have a neutron halo structure. Moreover, the matter rms radii and the reaction cross section  of these nuclei were calculated using the Glauber model.

Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 28 2018
Journal Name
Iraqi Journal Of Science
Theoretical Study of Nuclear Density Distributions and Elastic Electron Scattering Form Factors of Some Proton Halo Nuclei (17Ne and 8B)

     Theoretical investigation of proton halo-nucleus (8B and 17Ne) has revealed that the valence protons are to be in pure (1p1/2)1 orbit for 8B and (1d3/2)2 orbit for 17Ne.  The nuclear matter density distributions, the elastic electron scattering form factors and (proton, charge, neutron and matter) root-mean square (rms) are studied for our tested nuclei, through an effective two-body density operator for point nucleon system folded with two-body full correlation operator's functions. The full correlation (FC's ) takes account of the effect for the strong short range repulsion (SRC's) and the strong tensor force (TC's) in

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Study of Matter Density Distributions, Elastic Electron Scattering form Factors and Reaction Cross Sections of 8He And 17B Exotic Nuclei

The ground state densities of unstable neutron-rich 8He and 17B exotic nuclei are studied via the framework of the two-frequency shell model (TFSM) and the binary cluster model (BCM). In TFSM, the single particle harmonic oscillator wave functions are used with two different oscillator size parameters βc and βv where the former is for the core (inner) orbits and the latter is for the valence (halo) orbits. In BCM, the internal densities of the clusters are described by single particle Gaussian wave functions. Shell model calculations for the two valence neutrons in 8He and 17B are performed via the computer code OXBASH. The long tail performance is clearly noticed in the calculated neutron and matter density distributions of these nucl

... Show More
View Publication Preview PDF