Esterification reaction is most important reaction in biodiesel production. In this study, oleic acid was used as a suggested feedstock to study and simulate production of biodiesel. Batch esterification of oleic acid was carried out at operating conditions; temperature from 40 to 70 °C, ethanol to oleic acid molar ratio from 1/1 to 6/1, H2SO4 as the catalyst 1 and 5% wt of oleic acid, reaction time up to 180 min. The optimum conditions for the esterification reaction were molar ratio of ethanol/oleic acid 6/1, 5%wt H2SO4 relative to oleic acid, 70 °C, 90 min and conversion of oleic 0.92. The activation energy for the suggested model was 26625 J/mole for forward reaction and 42189 J/mole for equilibrium constant. The obtained results simulated to other types of reactors with different operating conditions using reactop cascade package. The conversion of oleic acid of simulation results at optimum operating conditions was 0.97 for isothermal batch and plug flow reactors, 0.67 for isothermal CSTR, while the conversions of oleic acid in the adiabatic mode were 0.82, 0.40, 0.74 for batch, CSTR, PFR reactors respectively.
Sliding Mode Controller (SMC) is a simple method and powerful technique to design a robust controller for nonlinear systems. It is an effective tool with acceptable performance. The major drawback is a classical Sliding Mode controller suffers from the chattering phenomenon which causes undesirable zigzag motion along the sliding surface. To overcome the snag of this classical approach, many methods were proposed and implemented. In this work, a Fuzzy controller was added to classical Sliding Mode controller in order to reduce the impact chattering problem. The new structure is called Sliding Mode Fuzzy controller (SMFC) which will also improve the properties and performance of the classical Sliding Mode control
... Show MoreA liquid-solid chromatography of Bovine Serum Albumin (BSA) on (diethylaminoethyl-cellulose) DEAE-cellulose adsorbent is worked experimentally, to study the effect of changing the influent concentration of (0.125, 0.25, 0.5, and 1 mg/ml) at constant volumetric flow rate Q=1ml/min. And the effect of changing the volumetric flow rate (1, 3, 5, and 10 ml/min) at constant influent concentration of Co=0.125mg/ml. By using a glass column of (1.5cm) I.D and (50cm) length, packed with adsorbent of DEAE-cellulose of height (7cm). The influent is introduced in to the column using peristaltic pump and the effluent concentration is investigated using UV-spectrophotometer at 30oC and 280nm wavelength. A spread (steeper) break-through curve is gained
... Show MoreRecently, the development of the field of biomedical engineering has led to a renewed interest in detection of several events. In this paper a new approach used to detect specific parameter and relations between three biomedical signals that used in clinical diagnosis. These include the phonocardiography (PCG), electrocardiography (ECG) and photoplethysmography (PPG) or sometimes it called the carotid pulse related to the position of electrode.
Comparisons between three cases (two normal cases and one abnormal case) are used to indicate the delay that may occurred due to the deficiency of the cardiac muscle or valve in an abnormal case.
The results shown that S1 and S2, first and second sound of the
... Show MoreAim of the study is to find any correlation between obesity (insulin resistance) and type I diabetes in children. Obesity and diabetes mellitus are the common health problems, and obesity is common cause of the insulin resistance. The results revealed marked increased in glucose, insulin, HbAlc and insulin resistance in obese diabetic type I patients comparing to control group they were obese and non-obese found to be within normal values for glucose, insulin, FIbAlc , and insulin resistance.
Background: Proper cleaning and shaping of the whole root canal space have been recognized as a real challenge, particularly in oval-shaped canals.This in vitro study was conducted to evaluate and compare the efficiency of different instrumentation systems in removing of dentin debris at three thirds of oval-shaped root canals and to compare the percentage of remaining dentin debris among the three thirds for each instrumentation system. Materials and methods: Fifty freshly extracted human mandibular molars with single straight oval-shaped distal root canals were randomly divided into five groups of ten teeth each. Group One: instrumentation with ProTaper Universal hand instruments, Group Two: instrumentation with ProTaper Universal rotary
... Show More

