The fouling depositions of crude oil stream were studied theoretically in a shell and tube heat exchanger to investigate the effect of depositions on the heat transfer process. The employed heat exchanger was with steam flowing in the inner tubes and crude oil in the shell at different velocities and bulk temperatures. It is assumed that fouling occurs only on the heated stream side (crude oil). The analysis was carried out for turbulent flow heat transfer conditions with wide range of Reynolds number, bulk temperature and time. Many previously proposed models for fouling resistance were employed to estimate a new model for fouling rate. It is found that the fouling rate and consequently the heat transfer coefficient were affected by Reynolds number, Prandtls number, film temperature, activation energy, and time.
The results obtained showed that fouling resistance decreased with the increasing of Reynolds number and Prandtls number, and increased with the increasing of film temperature and time. The analyses of results were compared with some experimental work and a reasonable agreement is attained.
The physicochemical behaviour of dodecyltrimethylammonium bromide (DTAB) in water and ethanol-water mixture in the presence and absence of ZnSO4 were studied by measuring the conductivity at 298.15 K. The pre-micellar (S1) and post-micellar slopes (S2) were obtained and calculated the degree of dissociation (α) and the critical micelle concentration (cmc). With an increase in ethanol content, the cmc and α of DTAB increased whereas, in the presence of ZnSO4, the cmc and α decreased. By using cmc and α, thermodynamic properties as the standard free energy of micellization ( ) were evaluated. With an increase in ethanol content, the negative values of are decreased indicating less spont
... Show More(3) (PDF) Theoretical investigation of charge transfer at N3 sensitized molecule dye contact with TiO2 and ZnO semiconductor. Available from: https://www.researchgate.net/publication/362773606_Theoretical_investigation_of_charge_transfer_at_N3_sensitized_molecule_dye_contact_with_TiO2_and_ZnO_semiconductor [accessed May 01 2023].
We present a simple model of charge transfer current through sensitizer N3 molecule contact to TiO2 and ZnO semiconductors to calculate the charge transfer current. The model underlying depends on the fundamental parameters of the charge transfer reaction and it is based on the quantum transition theory approach. A transition energy, driving energy and potential barrier have been taken into account charge transfer current at N3 / TiO2 and N3 / ZnO devices with wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system.The effects of the transition energy and potential barrier are computed and discussion on charge transfer current.
... Show MoreThermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl
Experimental study has been conducted for laminar natural convection heat transfer of air flow through a rectangular enclosure fitted with vertical partition. The partition was oriented parallel to the two vertical isothermal walls with different temperatures, while all the other surfaces of the enclosure were insulated. In this study a test rig has been designed and constructed to allow studying the effect of Rayleigh number, aperture height ratio, partition thickness, the position of aperture according to the side walls and according to the height, the position of the partition according to the hot wall, and partition inclination. The experiments were carried out with air as the working fluid for Rayleigh number range (5*107 – 1.3*10
... Show MoreThis paper reports a numerical study of flow behaviors and natural convection heat transfer characteristics in an inclined open-ended square cavity filled with air. The cavity is formed by adiabatic top and bottom walls and partially heated vertical wall facing the opening. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. A computer program to solve mathematical model has been developed and written as a code for MATLAB software. Results in the form of streamlines, isotherms, and average Nusselt number, are obtained for a wide range of Rayleigh numbers 103-106 with Prandtl number 0.71
... Show More